【題目】如圖,在中,AEBC于點(diǎn)E,延長(zhǎng)BC至點(diǎn)F,點(diǎn)使,連接AF、DE、DF。
(1)求證:四邊形AEFD是矩形;
(2)若,,,求AE的長(zhǎng)。
【答案】(1)見(jiàn)解析 (2)
【解析】
(1)先證明四邊形AEFD是平行四邊形,再證明∠AEF=90°即可.
(2)證明△ABF是直角三角形,由三角形的面積即可得出AE的長(zhǎng).
解答:
(1)證明:∵CF=BE,
∴CF+EC=BE+EC.
即EF=BC.
∵在ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四邊形AEFD是平行四邊形。
∵AE⊥BC,
∴∠AEF=90.
∴四邊形AEFD是矩形;
(2)∵四邊形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面積= ABAF= BFAE.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教師辦公室有一種可以自動(dòng)加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機(jī)自動(dòng)停止加熱,水溫開始下降,水溫y(℃)和通電時(shí)間x(min)成反比例函數(shù)關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過(guò)程.設(shè)某天水溫和室溫均為20 ℃,接通電源后,水溫y(℃)和通電時(shí)間x(min)之間的關(guān)系如圖所示,回答下列問(wèn)題:
(1)分別求出當(dāng)0≤x≤8和8<x≤a時(shí),y和x之間的函數(shù)關(guān)系式;
(2)求出圖中a的值;
(3)李老師這天早上7:30將飲水機(jī)電源打開,若他想在8:10上課前喝到不低于40 ℃的開水,則他需要在什么時(shí)間段內(nèi)接水?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】早晨,小剛沿著通往學(xué)校唯一的一條路(直路)上學(xué),途中發(fā)現(xiàn)忘帶飯盒,停下來(lái)往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學(xué)校,同時(shí)小剛返回,兩人相遇后,小剛立即趕往學(xué)校,媽媽回家,15分鐘后媽媽到家,再經(jīng)過(guò)3分鐘小剛到達(dá)學(xué)校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時(shí)間t(單位:分)之間的函數(shù)關(guān)系如圖,下列四種說(shuō)法中錯(cuò)誤的是( )
A. 打電話時(shí),小剛和媽媽的距離為1250米
B. 打完電話后,經(jīng)過(guò)23分鐘小剛到達(dá)學(xué)校
C. 小剛和媽媽相遇后,媽媽回家的速度為150米/分
D. 小剛家與學(xué)校的距離為2550米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),直線經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是x軸下方拋物線上一點(diǎn),連接AC,過(guò)點(diǎn)P作PQ∥AC交BC于點(diǎn)Q,過(guò)點(diǎn)Q作x軸的平行線,過(guò)點(diǎn)P作y軸的平行線,兩條直線相交于點(diǎn)K,PK交BC于點(diǎn)H,設(shè)QK的長(zhǎng)為t,PH的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式;(不要求寫出自變量t的取值范圍)
(3)在(2)的條件下,PK交x軸于點(diǎn)R,過(guò)點(diǎn)R作RT⊥PQ,垂足為T,當(dāng)PK=PT時(shí),將線段QT繞點(diǎn)Q逆時(shí)針旋轉(zhuǎn)90得到線段QL,M是線段PQ上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N,連接ON、ML,當(dāng)ML∥ON時(shí),求N點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商從市場(chǎng)得知如下信息:
A品牌計(jì)算器 | B品牌計(jì)算器 | |
進(jìn)價(jià)(元/臺(tái)) | 700 | 100 |
售價(jià)(元/臺(tái)) | 900 | 160 |
他計(jì)劃用不超過(guò)4萬(wàn)元的資金一次性購(gòu)進(jìn)這兩種品牌計(jì)算器共100臺(tái),設(shè)該經(jīng)銷商購(gòu)進(jìn)A品牌計(jì)算器x臺(tái),這兩種品牌計(jì)算器全部銷售完后獲得利潤(rùn)為y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若要求全部銷售完后獲得的利潤(rùn)不少于1.26萬(wàn)元,該經(jīng)銷商有哪幾種進(jìn)貨方案?
(3)選擇哪種進(jìn)貨方案,該經(jīng)銷商可獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:四邊形ABCD是平行四邊形,點(diǎn)E在邊BA的延長(zhǎng)線上,CE交AD于點(diǎn)F,∠ECA=∠D
(1)求證:△EAC∽△ECB;
(2)若DF=AF,求AC:BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx的圖象與x軸的正半軸交于點(diǎn)A(4,0),過(guò)A點(diǎn)的直線與y軸的正半軸交于點(diǎn)B,與二次函數(shù)的圖象交于另一點(diǎn)C,過(guò)點(diǎn)C作CH⊥x軸,垂足為H.設(shè)二次函數(shù)圖象的頂點(diǎn)為D,其對(duì)稱軸與直線AB及x軸分別交于點(diǎn)E和點(diǎn)F.
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果CE=3BC,求點(diǎn)B的坐標(biāo);
(3)如果△DHE是以DH為底邊的等腰三角形,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足+=0,請(qǐng)回答問(wèn)題:
(1)請(qǐng)直接寫出a、b、c的值;
(2)數(shù)軸上a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)M是A、B之間的一個(gè)動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為m,請(qǐng)化簡(jiǎn)(請(qǐng)寫出化簡(jiǎn)過(guò)程);
(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng).若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng).同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC-AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購(gòu)買A,B兩種型號(hào)的污水處理設(shè)備共10臺(tái).已知用90萬(wàn)元購(gòu)買A型號(hào)的污水處理設(shè)備的臺(tái)數(shù)與用75萬(wàn)元購(gòu)買B型號(hào)的污水處理設(shè)備的臺(tái)數(shù)相同,每臺(tái)設(shè)備價(jià)格及月處理污水量如下表所示:
污水處理設(shè)備 | A型 | B型 |
價(jià)格(萬(wàn)元/臺(tái)) | m | m-3 |
月處理污水量(噸/臺(tái)) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購(gòu)買污水處理設(shè)備的資金不超過(guò)165萬(wàn)元,問(wèn)有多少種購(gòu)買方案?并求出每月最多處理污水量的噸數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com