【題目】已知直線l:y=kx(k<0),將直線y=kx沿y軸向下平移m(m>0)個單位得到直線y=kx﹣m,平移后的直線與拋物線y=ax2相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),拋物線y=ax2經(jīng)過點(diǎn)P(6,﹣9).
(1)求a的值;
(2)如圖1,當(dāng)∠AOB<90°時,求m的取值范圍;
(3)如圖2,將拋物線y=ax2向右平移一個單位,再向上平移n個單位(n>0).若第一象限的拋物線上存在點(diǎn)M,N兩點(diǎn),且M,N兩點(diǎn)關(guān)于直線y=x軸對稱,求n的取值范圍.
【答案】
(1)
解:∵拋物線y=ax2經(jīng)過點(diǎn)P(6,﹣9),
∴36a=﹣9,
解得a=﹣
(2)
解:將y=kx﹣m代入y=﹣ x2,得 x2+kx﹣m=0,
∵y=kx﹣m與拋物線y=﹣ x2相交于A(x1,y1),B(x2,y2)兩點(diǎn),
∴y1=﹣ x12,y2=﹣ x22,x1x2=﹣4m,
∴y1y2=(﹣ x12)(﹣ x22)= (﹣4m)2=m2.
當(dāng)∠AOB=90°時,如圖1,過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)B作BN⊥x軸于點(diǎn)N.
在△AOM與△OBN中,
,
∴△AOM∽△OBN,
∴ = ,即 = ,
∴y1y2=﹣x1x2,
∴m2=4m,
∵m>0,
∴m=4,
∴當(dāng)∠AOB<90°時,m>4
(3)
解:∵M(jìn),N兩點(diǎn)關(guān)于直線y=x軸對稱,
∴直線y=x是線段MN的垂直平分線,
∴直線MN的斜率為﹣1,OM=ON,
∴∠MOP=∠NOP,
∵∠GOP=∠HOP=45°,
∴∠GOM=∠HON.
如圖2,設(shè)直線MN的解析式為y=﹣x+b,與平移后的拋物線y=﹣ (x﹣1)2+n交于M、N兩點(diǎn),交x軸于E點(diǎn).分別過M,N作y軸、x軸垂線,垂足分別為G、H,
設(shè)M(m1,n1),N(m2,n2),直線MN與直線y=x交于點(diǎn)P.
在△OMG與△ONH中,
,
∴△OMG≌△ONH,
∴MG=HN,即MG=HE.
將y=﹣ (x﹣1)2+n代入y=﹣x+b得: x2﹣ x+ +b﹣n=0,
由根與系數(shù)的關(guān)系得m1+m2=6,
∵OE=HE+OH=MG+OH=m1+m2=6,
∴b=6.
即 x2﹣ x+ ﹣n=0,
∵△>0,
∴(﹣ )2﹣4× ×( ﹣n)>0,
解得n>4.
又M,N在第一象限,
∴m1m2=4( ﹣n)>0,
解得n< ,
∴n的取值范圍是4<n<
【解析】(1)將點(diǎn)P(6,﹣9)的坐標(biāo)代入y=ax2 , 即可求出a的值;(2)將y=kx﹣m代入y=﹣ x2 , 得 x2+kx﹣m=0,根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及根與系數(shù)的關(guān)系得出y1=﹣ x12 , y2=﹣ x22 , x1x2=﹣4m,那么y1y2=m2 . 當(dāng)∠AOB=90°時,如圖1,過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)B作BN⊥x軸于點(diǎn)N.證明△AOM∽△OBN,根據(jù)相似三角形對應(yīng)邊成比例得出y1y2=﹣x1x2 , 依此列出關(guān)于m的方程,求出m的值,進(jìn)而得出當(dāng)∠AOB<90°時,m的取值范圍;(3)根據(jù)軸對稱的性質(zhì)得出直線y=x是線段MN的垂直平分線,如圖2,設(shè)直線MN的解析式為y=﹣x+b,與平移后的拋物線y=﹣ (x﹣1)2+n交于M、N兩點(diǎn),交x軸于E點(diǎn),分別過M,N作y軸、x軸垂線,垂足分別為G、H,設(shè)M(m1 , n1),N(m2 , n2).利用AAS證明△OMG≌△ONH,得出MG=HN,即MG=HE.將y=﹣ (x﹣1)2+n代入y=﹣x+b得: x2﹣ x+ +b﹣n=0,由根與系數(shù)的關(guān)系得m1+m2=6,則b=6,那么 x2﹣ x+
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓:(x+cosθ)2+(y﹣sinθ)2=1,直線l:y=kx.給出下面四個命題: ①對任意實數(shù)k和θ,直線l和圓M有公共點(diǎn);
②對任意實數(shù)k,必存在實數(shù)θ,使得直線l和圓M相切;
③對任意實數(shù)θ,必存在實數(shù)k,使得直線l和圓M相切;
④存在實數(shù)k和θ,使得圓M上有一點(diǎn)到直線l的距離為3.
其中正確的命題是(寫出所以正確命題的編號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒有公共點(diǎn),求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生在旗桿EF與實驗樓CD之間的A處,測得∠EAF=60°,然后向左移動12米到B處,測得∠EBF=30°,∠CBD=45°,sin∠CAD= .
(1)求旗桿EF的高;
(2)求旗桿EF與實驗樓CD之間的水平距離DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)把條形統(tǒng)計圖補(bǔ)充完整;
(3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校18 000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為1,M、N分別是AD、BC邊上的點(diǎn),且AB∥MN,將紙片的一角沿過點(diǎn)B的直線折疊,使A落在MN上,落點(diǎn)記為A′,折痕交AD于點(diǎn)E,若M是AD邊上距D點(diǎn)最近的n等分點(diǎn)(n≥2,且n為整數(shù)),則A′N= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋裝有三個完全相同的小球,分別標(biāo)號為1、2、3.求下列事件的概率:
(1)從中任取一球,小球上的數(shù)字為偶數(shù)
(2)從中任取一球,記下數(shù)字作為點(diǎn)A的橫坐標(biāo)x,把小球放回袋中,再從中任取一球記下數(shù)字作為點(diǎn)A的縱坐標(biāo)y,點(diǎn)A(x,y)在函數(shù)y=的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校學(xué)生的課外閱讀情況,隨機(jī)抽查了10學(xué)生周閱讀用時數(shù),結(jié)果如下表:
周閱讀用時數(shù)(小時) | 4 | 5 | 8 | 12 |
學(xué)生人數(shù)(人) | 3 | 4 | 2 | 1 |
則關(guān)于這10名學(xué)生周閱讀所用時間,下列說法正確的是( 。
A.中位數(shù)是6.5
B.眾數(shù)是12
C.平均數(shù)是3.9
D.方差是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=6,點(diǎn)E在邊CD上,DE= DC,連接AE,將△ADE沿AE翻折,點(diǎn)D落在點(diǎn)F處,點(diǎn)O是對角線BD的中點(diǎn),連接OF并延長OF交CD于點(diǎn)G,連接BF,BG,則△BFG的周長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com