已知:如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上的一點(diǎn),CD交AB的延長(zhǎng)線于D,∠DCB=∠CAB.
(1)求證:CD為⊙O的切線.
(2)若CD=4,BD=2,求⊙O的半徑長(zhǎng).

(1)證明:∵∠DCB=∠CAB,∠CAB=∠ACO,
∴∠DCB=∠ACO,
∵AB是⊙O的直徑,
∴∠ACB=90°,
即∠ACO+∠OCB=90°
∴∠DCB+∠OCB=90°,
∴∠OCD=90°
∴CD為⊙O的切線;

(2)解:設(shè)⊙O的半徑為R,則OD=R+2,
∵CD=4,BD=2,∠OCD=90°,
由勾股定理得R2+42=(R+2)2,
解得:R=3,
∴⊙O的半徑長(zhǎng)為3.
分析:(1)要證CD為⊙O的切線,只要證明OC⊥CD即可,由AB是⊙O的直徑可得∠ACB=90°,只要∠DCB=∠ACO,由半徑及已知∠DCB=∠CAB可得答案;
(2)可設(shè)出半徑,用半徑表示出OD,在直角三角形OCD中,利用勾股定理可求得半徑的值.
點(diǎn)評(píng):本題考查了切線的判斷及性質(zhì)及勾股定理的知識(shí);證明過半徑的外端點(diǎn)且垂直于這條半徑的直線是圓的切線是常用的方法,求圓的半徑常常用勾股定理,這些方法十分重要,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長(zhǎng)線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案