如圖,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,求證:AC=AE+CD.

證明:在AC上取AF=AE,連接OF,
∵AD平分∠BAC、
∴∠EAO=∠FAO,
在△AEO與△AFO中,

∴△AEO≌△AFO(SAS),
∴∠AOE=∠AOF;
∵AD、CE分別平分∠BAC、∠ACB,
∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°-∠B)=60°
則∠AOC=180°-∠ECA-∠DAC=120°;
∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,
則∠COF=60°,
∴∠COD=∠COF,
又∵∠FCO=∠DCO,CO=CO,
∴△FOC≌△DOC(ASA),
∴DC=FC,
∵AC=AF+FC,
∴AC=AE+CD.
分析:在AC上取AF=AE,連接OF,即可證得△AEO≌△AFO,得∠AOE=∠AOF;再證得∠COF=∠COD,則根據(jù)全等三角形的判定方法AAS即可證△FOC≌△DOC,可得DC=FC,即可得結(jié)論.
點(diǎn)評:本題考查了全等三角形的判定和性質(zhì),涉及到三角形內(nèi)角和定理,熟練掌握全等三角形的判定方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案