【題目】如圖,拋物線y=ax2﹣x+4與x軸交于點(diǎn)A,B,B點(diǎn)的坐標(biāo)為(﹣4,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式和對(duì)稱(chēng)軸.
(2)連接AC、BC,在x軸下方的拋物線上求一點(diǎn)M,使△ABM與△ABC的面積相等.
(3)在x軸下方作平行于x軸的直線l,與拋物線交于點(diǎn)D、E兩點(diǎn)(點(diǎn)D在對(duì)稱(chēng)軸的左側(cè)).過(guò)點(diǎn)D、E分別作x軸的垂線,垂足分別為G、F,當(dāng)矩形DEFG中DE=2DG時(shí),求D點(diǎn)的坐標(biāo).
【答案】
(1)解:把B(﹣4,0)代入y=ax2﹣x+4得16a+4+4=0,解得a=﹣ ,
所以拋物線的解析式為y=﹣ x2﹣x+4,
拋物線的對(duì)稱(chēng)軸為直線x=﹣ =﹣1
(2)解:當(dāng)x=0時(shí),y=﹣ x2﹣x+4=4,則C(0,4),
∵△ABM與△ABC的面積相等,
∴點(diǎn)M的縱坐標(biāo)為﹣4,
當(dāng)y=﹣4時(shí),﹣ x2﹣x+4=﹣4,解得x1=﹣1+ ,x2=﹣1﹣ ,
∴M點(diǎn)的坐標(biāo)為(﹣1+ ,﹣4)或(﹣1﹣ ,﹣4)
(3)解:如圖,
設(shè)D(t,﹣ t2﹣t+4)(t<﹣1)
∵DE=2DG,
∴﹣1﹣t=﹣(﹣ t2﹣t+4),
整理得t2+4t﹣6=0,解得t1=﹣2﹣ ,t2=﹣2+ ,
∴D(﹣2﹣ ,﹣1﹣ ).
【解析】(1)B點(diǎn)在拋物線上,故此點(diǎn)B的坐標(biāo)符合拋物線的函數(shù)解析式,將點(diǎn)B的坐標(biāo)代入函數(shù)關(guān)系式可求得a的值;
(2)將x=0代入拋物線的解析式求得對(duì)應(yīng)的y的值,從而可得到點(diǎn)C的坐標(biāo),再利用三角形面積公式得到點(diǎn)M、C點(diǎn)到x軸的距離相等,即點(diǎn)M的縱坐標(biāo)為-4,然后解方程-,x2-x+4=-4即可得到M點(diǎn)的坐標(biāo);
(3)設(shè)D(t,-t2-t+4)(t<-1),利用DE=2DG和拋物線的對(duì)稱(chēng)性得到關(guān)于t的方程,從而可求得t的值,故此可得到點(diǎn)D的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點(diǎn)E,AF交CD于點(diǎn)F,連接EF,過(guò)點(diǎn)A作AH⊥EF,垂足為H,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,若BE=2,DF=3,則AH的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分別是邊BD,BC上的動(dòng)點(diǎn),則CM+MN的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接體育中考,某校九年級(jí)開(kāi)展了體育中考項(xiàng)目的第一次模擬測(cè)驗(yàn). 下圖為某校九年級(jí)同學(xué)各項(xiàng)目達(dá)標(biāo)人數(shù)統(tǒng)計(jì)圖:
(1)在九年級(jí)學(xué)生中,達(dá)標(biāo)的總?cè)藬?shù)是;
(2)在扇形統(tǒng)計(jì)圖中,表示“其他”項(xiàng)目扇形的圓心角的度數(shù)是;
(3)經(jīng)過(guò)一段時(shí)間的練習(xí),在第二次模擬測(cè)驗(yàn)中,“排球”項(xiàng)目達(dá)標(biāo)的人數(shù)增長(zhǎng)到了231人,則“排球”項(xiàng)目達(dá)標(biāo)人數(shù)的增長(zhǎng)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生讀課外書(shū)冊(cè)數(shù)的情況,繪制成條形統(tǒng)計(jì)圖(如圖1)和不完整的扇形圖(如圖2),其中條形統(tǒng)計(jì)圖被墨跡遮蓋了一部分.
(1)求條形統(tǒng)計(jì)圖中被遮蓋的數(shù),并寫(xiě)出冊(cè)數(shù)的中位數(shù);
(2)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊(cè),將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊(cè)數(shù)的中位數(shù)沒(méi)有改變,則最多補(bǔ)查了____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)種型號(hào)衣服9件,種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)種型號(hào)衣服12件,種型號(hào)衣服8件,共需1880元;已知銷(xiāo)售一件型號(hào)衣服可獲利18元,銷(xiāo)售一件型號(hào)衣服可獲利30元.要使在這次銷(xiāo)售中獲利不少于699元,且型號(hào)衣服不多于28件.
(1)求型號(hào)衣服進(jìn)價(jià)各是多少元?
(2)若已知購(gòu)進(jìn)型號(hào)衣服是型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案?并簡(jiǎn)述購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,AC=12,經(jīng)過(guò)點(diǎn)C且與AB邊相切的動(dòng)圓與BC、CA分別相交于點(diǎn)M、N,則線段MN長(zhǎng)度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列每對(duì)數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)間的距離,3與5,6與-2,-4與3,-2與-6.并回答下列各題:
(1)若數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為-2,則A與B兩點(diǎn)間的距離是_______;
(2)若數(shù)軸上的點(diǎn)A表示的數(shù)為x,點(diǎn)B表示的數(shù)為3,則A與B兩點(diǎn)間的距離可以表示為________(用含x的代數(shù)式表示);
(3)若數(shù)軸上的點(diǎn)A表示的數(shù)為x,結(jié)合數(shù)軸可求得|x+4|+|x-2|的最小值為______,取得最小值時(shí)x的取值范圍為________;
(4)滿足|x+4|+|x-2|>6的x的取值范圍為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一水池放水,先用一臺(tái)抽水機(jī)工作一段時(shí)間后停止,然后再調(diào)來(lái)一臺(tái)同型號(hào)抽水機(jī),兩臺(tái)抽水機(jī)同時(shí)工作直到抽干.設(shè)從開(kāi)始工作的時(shí)間為,剩下的水量為.下面能反映與之間的關(guān)系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com