(1998•寧波)如圖,點B,C在DE上,AB=AC,CD=BE,求證:AD=AE.

【答案】分析:根據(jù)全等三角形的判定定理之一(SAS),要根據(jù)已知條件在圖形上的位置來選擇判定方法.
解答:證明:∵AB=AC,
∴∠ABC=∠ACB.
∴∠ABD=∠ACE.
∵CD=BE,CD=DB+BC,BE=CE+BC,
∴DB=CE.
∵AB=AC,∠ABD=∠ACE,DB=CE,
∴△ABD≌△ACE.
∴AD=AE.
點評:本題考查了全等三角形的判定;應(yīng)用了全等三角形的判定定理的應(yīng)用,要注意對應(yīng)關(guān)系的找法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•寧波)如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標(biāo)分別為x1,x2,且x1>0,x2>0,正方形ABCD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設(shè),求sin∠E和k.
((2),(3)的結(jié)果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•寧波)如圖,在直角坐標(biāo)系中,OA=OC,AB=4,tan∠BCO=,二次函數(shù)y=ax2+bx+c圖象經(jīng)過A、B、C三點.
(1)求A,B,C三點的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年浙江省寧波市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1998•寧波)如圖,在直角坐標(biāo)系中,OA=OC,AB=4,tan∠BCO=,二次函數(shù)y=ax2+bx+c圖象經(jīng)過A、B、C三點.
(1)求A,B,C三點的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省寧波市中考數(shù)學(xué)試卷 題型:解答題

(1998•寧波)如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標(biāo)分別為x1,x2,且x1>0,x2>0,正方形ABCD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設(shè),求sin∠E和k.
((2),(3)的結(jié)果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《一元二次方程》(02)(解析版) 題型:解答題

(1998•寧波)如圖,四邊形ABCD內(nèi)接于以AC為直徑的⊙O,AC,BD交于點E,DB平分∠ADC,AF∥BD交CD延長線于點F,且CD,DF的長是關(guān)于x的方程x2-3x+p=0的兩根.
(1)求證:DE=p;
(2)求DB的長.

查看答案和解析>>

同步練習(xí)冊答案