【題目】如圖,在平面直角坐標系中,拋物線y=x2x﹣x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.

(1)求直線AE的解析式;

(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當PCE的面積最大時,求P點坐標?

(3)點G是線段CE的中點,將拋物線y=x2x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在點Q,使得FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

【答案】(1) y= x+ (2) P(2,﹣)(3) (3,)或(3,)或(3,2)或(3,﹣

【解析】試題分析:(1)拋物線的解析式可變形為y= (x+1)(x-3),從而可得到點A和點B的坐標,然后再求得點E的坐標,設(shè)直線AE的解析式為y=kx+b,將點A和點E的坐標代入求得kb的值,從而得到AE的解析式;

(2)設(shè)直線CE的解析式為y=mx-,將點E的坐標代入即可確定直線CE的解析式,過點PPFy軸,交CE與點F,設(shè)點P的坐標為(x,x2x),求出PF的值,表示出EPC的面積,再利用二次函數(shù)的性質(zhì)可求得x的值,從而得到點P的坐標;

(3)由平移后的拋物線經(jīng)過點D,可得到點F的坐標,利用中點坐標公式可求得點G的坐標,然后分為FG=FQGF=GQ,QG=QF三種情況求解即可.

解:(1)∵y=x2-x-

y= (x+1)(x-3).

A(-1,0),B(3,0).

x=4時,y=.

E(4,),

設(shè)直線AE的解析式為y=kx+b,將點A和點E的坐標代入得:

,

計算得出:k=,b=,

∴直線AE的解析式為y=x+

(2)設(shè)直線CE的解析式為y=mx-,將點E的坐標代入得4m-=,計算出m=.

∴直線CE的解析式為y=x-.

過點PPFy軸,交CE與點F,如圖①所示.

設(shè)點P的坐標為(xx2x),則點Fx,x),

FP=(x)-(x2x)=-x2+x,

∴△EPC的面積=×(-x2+x)×4=-x2+x.

∴當x=2時,EPC的面積最大.

P(2,-).

(3)如圖②所示:

y經(jīng)過點Dy的頂點為點F,

∴點F(3,-).

∵點GCE的中點,

G(2,).

FG=,.

∴當FG=FQ時,點Q(3,),Q′(3,).

GF=GQ時,點F與點Q關(guān)于y=對稱,

Q″(3,2).

QG=QF時,設(shè)點Q1的的坐標為(3,a).

由兩點間的距離公式可以知道:a+=,計算得出:a=-.

∴點Q1的坐標為(3,-).

綜上所述,點Q的坐標為(3,)或(3,)或(3,2)或(3,-).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】QQ運動記錄的小莉爸爸20172月份7天步行的步數(shù)(單位:萬步)如下表:

日期

26

27

28

29

210

211

212

步數(shù)

2.1

1.7

1.8

1.9

2.0

1.8

2.0

(1)制作適當?shù)慕y(tǒng)計圖表示小莉爸爸這7天步行的步數(shù)的變化趨勢;

(2)求小莉爸爸這7天中每天步行的平均步數(shù);

(3)估計小莉爸爸2月份步行的總步數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校對七、八、九年級的學生進行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學校從三個年級隨機抽取200名學生的體育成績進行統(tǒng)計分析.相關(guān)數(shù)據(jù)的統(tǒng)計圖、表如下:

根據(jù)以上信息解決下列問題:

1)在統(tǒng)計表中,a的值為      b的值為      ;

2)在扇形統(tǒng)計圖中,八年級所對應(yīng)的扇形圓心角為      度;

3)若該校三個年級共有2000名學生參加考試,試估計該校學生體育成績不合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一.為了倡導(dǎo)節(jié)約用水從我做起,小剛在他所在班的50名同學中,隨機調(diào)查了10名同學家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計圖

1】求這10個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

2】根據(jù)樣本數(shù)據(jù),估計小剛所在班50名同學家庭中月均用水量不超過7 t的約有多少戶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-1,03,P為數(shù)軸上任意一點其對應(yīng)的數(shù)為x

1MN的長為 ;

2如果點P到點M、N的距離相等,那么x的值是

3數(shù)軸上是否存在點P,使點P到點MN的距離之和是8?若存在,直接寫出x的值;若不存在請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點M、N的距離相等t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,點EBC的中點,連接AE并延長交DC的延長線于點F,連接BF

(1)求證:△ABE≌△FCE;

(2)AFAD,求證:四邊形ABFC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰梯形ABCD中,AD//BC,EAB的中點,過點EEF//BCCD于點F,AB4,BC6B60°

1)求點EBC的距離;

2)點P為線段EF上的一個動點,過點PPMEFBCM,過MMN//AB交折線ADCN,連結(jié)PN,設(shè)EPx

①當點N在線段AD上時(如圖2),PMN的形狀是否發(fā)生改變?若不變,求出PMN的周長;若改變,請說明理由;

②當點N在線段DC上時(如圖3),是否存在點P,使PMN為等腰三角形?若存在,請求出所有滿足條件的x的值;若不存在,請說明理由.

1 2 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上的AB兩點分別對應(yīng)數(shù)字a、b,且a、b滿足|4a-b|+a-42=0

1a= b= ,并在數(shù)軸上面出AB兩點;

2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;

3)數(shù)軸上還有一點C的坐標為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,P、Q兩點之間的距離為4,并求此時點Q對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,O為坐標原點,已知A(-1,1),在坐標軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有(  �。�

A. 10個 B. 8個 C. 4個 D. 6個

查看答案和解析>>

同步練習冊答案