【題目】如圖,在平面直角坐標系中,拋物線y=x2﹣
x﹣
與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當△PCE的面積最大時,求P點坐標?
(3)點G是線段CE的中點,將拋物線y=x2﹣
x﹣
沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
【答案】(1) y= x+
(2) P(2,﹣
)(3) (3,
)或(3,
)或(3,2
)或(3,﹣
)
【解析】試題分析:(1)拋物線的解析式可變形為y= (x+1)(x-3),從而可得到點A和點B的坐標,然后再求得點E的坐標,設(shè)直線AE的解析式為y=kx+b,將點A和點E的坐標代入求得k和b的值,從而得到AE的解析式;
(2)設(shè)直線CE的解析式為y=mx-,將點E的坐標代入即可確定直線CE的解析式,過點P作PF∥y軸,交CE與點F,設(shè)點P的坐標為(x,
x2
x
),求出PF的值,表示出△EPC的面積,再利用二次函數(shù)的性質(zhì)可求得x的值,從而得到點P的坐標;
(3)由平移后的拋物線經(jīng)過點D,可得到點F的坐標,利用中點坐標公式可求得點G的坐標,然后分為FG=FQ、GF=GQ,QG=QF三種情況求解即可.
解:(1)∵y=x2-
x-
,
∴y= (x+1)(x-3).
∴A(-1,0),B(3,0).
當x=4時,y=.
∴E(4,),
設(shè)直線AE的解析式為y=kx+b,將點A和點E的坐標代入得:
,
計算得出:k=,b=
,
∴直線AE的解析式為y=x+
(2)設(shè)直線CE的解析式為y=mx-,將點E的坐標代入得4m-
=
,計算出m=
.
∴直線CE的解析式為y=x-
.
過點P作PF∥y軸,交CE與點F,如圖①所示.
設(shè)點P的坐標為(x,x2
x
),則點F(x,
x
),
則FP=(x
)-(
x2
x
)=-
x2+
x,
∴△EPC的面積=×(-
x2+
x)×4=-
x2+
x.
∴當x=2時,△EPC的面積最大.
∴P(2,-).
(3)如圖②所示:
∵y′經(jīng)過點D,y′的頂點為點F,
∴點F(3,-).
∵點G為CE的中點,
∴G(2,).
∴FG=,.
∴當FG=FQ時,點Q(3,),Q′(3,
).
當GF=GQ時,點F與點Q″關(guān)于y=對稱,
∴點Q″(3,2).
當QG=QF時,設(shè)點Q1的的坐標為(3,a).
由兩點間的距離公式可以知道:a+=
,計算得出:a=-
.
∴點Q1的坐標為(3,-).
綜上所述,點Q的坐標為(3,)或(3,
)或(3,2
)或(3,-
).
科目:初中數(shù)學 來源: 題型:
【題目】QQ運動記錄的小莉爸爸2017年2月份7天步行的步數(shù)(單位:萬步)如下表:
日期 | 2月6日 | 2月7日 | 2月8日 | 2月9日 | 2月10日 | 2月11日 | 2月12日 |
步數(shù) | 2.1 | 1.7 | 1.8 | 1.9 | 2.0 | 1.8 | 2.0 |
(1)制作適當?shù)慕y(tǒng)計圖表示小莉爸爸這7天步行的步數(shù)的變化趨勢;
(2)求小莉爸爸這7天中每天步行的平均步數(shù);
(3)估計小莉爸爸2月份步行的總步數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對七、八、九年級的學生進行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學校從三個年級隨機抽取200名學生的體育成績進行統(tǒng)計分析.相關(guān)數(shù)據(jù)的統(tǒng)計圖、表如下:
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,a的值為 ,b的值為 ;
(2)在扇形統(tǒng)計圖中,八年級所對應(yīng)的扇形圓心角為 度;
(3)若該校三個年級共有2000名學生參加考試,試估計該校學生體育成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一.為了倡導(dǎo)“節(jié)約用水從我做起”,小剛在他所在班的50名同學中,隨機調(diào)查了10名同學家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計圖
【1】求這10個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
【2】根據(jù)樣本數(shù)據(jù),估計小剛所在班50名同學家庭中月均用水量不超過7 t的約有多少戶.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-1,0,3,點P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x.
(1)MN的長為 ;
(2)如果點P到點M、點N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點P,使點P到點M、點N的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由.
(4)如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點M、點N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,點E是BC的中點,連接AE并延長交DC的延長線于點F,連接BF.
(1)求證:△ABE≌△FCE;
(2)若AF=AD,求證:四邊形ABFC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰梯形ABCD中,AD//BC,E是AB的中點,過點E作EF//BC交CD于點F,AB=4,BC=6,∠B=60°.
(1)求點E到BC的距離;
(2)點P為線段EF上的一個動點,過點P作PM⊥EF交BC于M,過M作MN//AB交折線ADC于N,連結(jié)PN,設(shè)EP=x.
①當點N在線段AD上時(如圖2),△PMN的形狀是否發(fā)生改變?若不變,求出△PMN的周長;若改變,請說明理由;
②當點N在線段DC上時(如圖3),是否存在點P,使△PMN為等腰三角形?若存在,請求出所有滿足條件的x的值;若不存在,請說明理由.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上的A、B兩點分別對應(yīng)數(shù)字a、b,且a、b滿足|4a-b|+(a-4)2=0
(1)a= ,b= ,并在數(shù)軸上面出A、B兩點;
(2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;
(3)數(shù)軸上還有一點C的坐標為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,P、Q兩點之間的距離為4,并求此時點Q對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,O為坐標原點,已知A(-1,1),在坐標軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( �。�
A. 10個 B. 8個 C. 4個 D. 6個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com