【題目】若關于x的一元二次方程(x–2)(x–3)=m有實數(shù)根x1、x2,且x1<x2,則下列結論中錯誤的是

A. m=0時,x1=2,x2=3

B. m>–

C. m>0時,2<x1<x2<3

D. 二次函數(shù)y=(xx1)(xx2)+m的圖象與x軸交點的坐標為(2,0)和(3,0)

【答案】C

【解析】

試題根據方程的解的定義可以判定A正確;根據二次函數(shù)的最值問題,且結合題意可以判定B正確;根據二次函數(shù)與x軸交點的有關性質可以判定C錯誤;根據二次函數(shù)的定義可以判定D正確.①∵m=0時,方程為(x﹣2)(x﹣3=0,∴x1=2,x2=3,故A正確;y=x﹣2)(x﹣3=x2﹣5x+6=x﹣2,∴y的最小值為,一元二次方程(x﹣2)(x﹣3=m有實數(shù)根x1、x2,且x1x2,∴m,故B正確;③∵mO時,y=x﹣2)(x﹣3)>0,函數(shù)y′=x﹣2)(x﹣3﹣mx軸交于(x1,0),(x2,0),∴x123X2,故C錯誤;④∵y=x﹣x1)(x﹣x2+m=x﹣2)(x﹣3﹣m+m=x﹣2)(x﹣3),函數(shù)與x軸交于點(2,0),(3,0).故D正確.故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】自實施新教育改革后學生的自主學習、合作交流能力有很大提高張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分同學進行了為期半個月的跟蹤調查并將調查結果分為四類:A.特別好;B.好;C.一般;D.較差,并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:

(1)本次調查中張老師一共調查了多少名同學?

(2)求出調查中C類女生及D類男生的人數(shù),將條形統(tǒng)計圖補充完整;

(3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行一幫一互助學習請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點DBC邊上,點EAC的延長線上,DEDA

(1)求證:∠BAD=∠EDC

(2)作出點E關于直線BC的對稱點M,連接DMAM,猜想DMAM的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,陰影部分面積為的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店將每件進價元的某種商品按每件元出售,一天可銷出約件,該店想通過降低售價,增加銷售量的辦法來提高利潤,經過市場調查,發(fā)現(xiàn)這種商品單價每降低元,其銷售量可增加約件.

將這種商品每件的售價降低多少時,能使商店的銷售利潤為元?

這種商品的售價降低多少時,才能使商店的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知排球場的長度OD18 m,位于球場中線處球網的高度AB2.4 m,一隊員站在點O處發(fā)球,排球從點O的正上方1.6 mC點向正前方飛出,當排球運行至離點O的水平距離OE6 m時,到達最高點G建立如圖所示的平面直角坐標系

(1) 當球上升的最大高度為3.4 m時,對方距離球網0.4 m的點F處有一隊員,他起跳后的最大高度為3.1 m,問這次她是否可以攔網成功?請通過計算說明

(2) 若隊員發(fā)球既要過球網,又不出邊界,問排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒出界)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,的平分線與的垂直平分線交于點,將沿上,上)折疊,點與點恰好重合,則______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的內角∠DCB與外角∠ABE的平分線相交于點F.

1)若BFCD,∠ABC=80°,求∠DCB的度數(shù);

2)已知四邊形ABCD中,∠A=105,∠D=125,求∠F的度數(shù);

3)猜想∠F、∠A、∠D之間的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案