【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,則這時海輪所在的B處距離燈塔P的距離是( )

A.B.C.D.

【答案】C

【解析】

如圖,過點PPDAB于點D,首先根據(jù)題意得出∠MPA=A=65°,以及∠DBP=DPB=45°,再利用解直角三角形求出即可.

解:如圖,過點PPDAB于點D

由題意知∠DBP=DPB=45°

RtPBD中,cosDPB=

cos45°==

PB=PD

∵點A在點P的北偏東65°方向上

∴∠APD=25°

RtPAD中,cos25°=

PD=PAcos25°=80cos25°

PB=80 cos25°(海里)

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,平行四邊形內(nèi)有兩個全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=5,BC=4EBC邊上一點,連接DE,將矩形ABCD沿DE折疊,頂點C恰好落在AB邊上點F處,延長DEAB的延長線于點G

1)求線段BE的長;

2)連接CG,求證:四邊形CDFG是菱形;

3)如圖2,P,Q分別是線段DG,CG上的動點(與端點不重合),且∠CPQ=CDP,是否存在這樣的點P,使△CPQ是等腰三角形?若存在,請直接寫出DP的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是正方形ABCDCD上一點,連接AM,作DEAM于點E,BFAM于點F,連接BE,若AF1,四邊形ABED的面積為6,則∠EBF的余弦值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一塊形如母子正方形的板材,木工師傅想先把它分割成幾塊,然后適當拼接,制成某種特殊形狀的板面(要求板材不能有剩余,拼接時不重疊、無空隙),請你按下列要求,幫助木工師傅分別設計一種方案:

(1)板面形狀為非正方形的中心對稱圖形;

(2)板面形狀為等腰梯形;

(3)板面形狀為正方形.

請在方格紙中的圖形上畫出分割線,在相應的下邊的方格紙上面畫出拼接后的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=ACAD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P從菱形ABCD的頂點B出發(fā),沿BDA勻速運動到點A,BD的長是;圖2是點P運動時,PBC的面積y(cm2)隨時間x(s)變化的函數(shù)圖像.

(1)P的運動速度是 cm/s;

(2)a的值;

(3)如圖3,在矩形EFGH中,EF2a,FGEF1,若點PM、N分別從點E、FG三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,當點M到達點G(即點M與點G重合)時,三個點隨之停止運動;若點P不改變運動速度,且點P、M、N的運動速度的比為2:6:3,在運動過程中,PFM關于直線PM的對稱圖形是PF'M,設點P、MN的運動時間為t(單位:s)

①當t s時,四邊形PFMF'為正方形;

②是否存在t,使PFMMGN相似,若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,Aa,0),B0,b),a,b滿足,將線段AB平移得到CDA,B的對應點分別為C,D,其中點Cy軸負半軸上.

1)求AB兩點的坐標;

2)如圖1,連ADBC于點E,若點Ey軸正半軸上,求的值;

3)如圖2,點F,G分別在CD,BD的延長線上,連結FG,BAC的角平分線與DFG的角平分線交于點H,求GH之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm

查看答案和解析>>

同步練習冊答案