邊長為6的正三角形的內(nèi)切圓的半徑是

[  ]

A.

B.2

C.

D.2

答案:A
解析:

  注意:解本題的關(guān)鍵是理解三角形內(nèi)心的性質(zhì),即三角形的內(nèi)心是三角形三條角平分線的交點.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

以邊長為2cm的正三角形的高為邊長作第二個正三角形,以第二個正三角形的高為邊長作第三個正三角形,以此類推,則第十個正三角形的邊長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以邊長為2厘米的正三角形的高為邊長作第二個正三角形,以第二個正三角形的高為邊長作第三個正三角形,以此類推,則第十個正三角形的邊長是( 。
A、2×(
2
2
10厘米
B、2×(
1
2
9厘米
C、2×(
3
2
10厘米
D、2×(
3
2
9厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以邊長為2厘米的正三角形的高為邊長作第二個正三角形,以第二個正三角形的高為邊長作第三個正三角形,以此類推,則第四個正三角形的邊長是( 。
A、3×(
2
2
)
厘米
B、
3
2
厘米
C、
3
3
8
厘米
D、3×(
1
2
)
厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 

②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為________;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為________時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為________時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.

查看答案和解析>>

同步練習(xí)冊答案