2、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下結論錯誤的是( 。
分析:根據(jù)等邊三角形的性質可證∠DCB=60°,由三角形內角和外角定理可證∠DPC>60°,所以DP≠DE.
解答:解:已知△ABC、△DCE為正三角形,
故∠DCE=∠BCA=60°?∠DCB=60°,
又因為∠DPC=∠DAC+∠BCA,∠BCA=60°?∠DPC>60°,
故DP不等于DE,C錯.
∵△ABC、△DCE為正三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=60°,故D正確;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACP=∠BCQ,
∵AC=BC,∠DAC=∠QBC,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,故B正確;
∴CP=CQ,
∵∠PCQ=60°,
∴∠QPC=60°=∠ACB,
∴PQ∥AE,故A正確.
故選C.
點評:本題考查的是三角形內角和外角定理以及等邊三角形的性質的有關知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,C為線段AE上一動點,(不與A,E重合),在AE同側分別作等邊三角形ABC和CDE.則以下結論:①AD=BE  ②CP=CQ  ③AP=BQ   ④DE=DP  ⑤PQ∥AE中正確的有
①②③⑤
.并證明其中的一個結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正確的結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,C為線段AE上一動點(不與A、E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ,以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與點A、E重合),在AE同側分別作等邊△ABC和等邊△CDE,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.
求證:△PCQ為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與A,E重合)在AE同側分別作等邊△ABC和等邊△CDE,AD與BE相交于點O,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.請你寫出三個正確的結論:
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°

查看答案和解析>>

同步練習冊答案