【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

【答案】(1)證明見解析;(2)37°

【解析】1)先證明AC=DF,再運用SSS證明ABC≌△DEF;

(2)根據(jù)三角形內(nèi)角和定理可求∠ACB=37°,由(1)知∠F=ACB,從而可得結(jié)論.

解析:(1)AC=AD+DC, DF=DC+CF,且AD=CF

AC=DF

ABCDEF中,

ABC≌△DEF(SSS)

(2)由(1)可知,∠F=ACB

∵∠A=55°,B=88°

∴∠ACB=180°-(A+B)=180°-(55°+88°)=37°

∴∠F=ACB=37°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù)m滿足m2﹣m﹣2=0,當m=時,函數(shù)y=xm+(m+1)x+m+1的圖象與x軸無交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.

(1)求證:BF=DF;

(2)如圖2,過點D作DG∥BE,交BC于點G,連結(jié)FG交BD于點O.

①求證:四邊形BFDG是菱形;

②若AB=3,AD=4,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當 = 時,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y= 的圖象上.若點B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠ACDABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點E.

(1)求∠E的度數(shù).

(2)請猜想∠A與∠E之間的數(shù)量關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形ABC中,D是邊BC上的一點,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面積是( 。

A. 30 B. 36 C. 72 D. 125

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學生必須且只能選擇一項,為了解選擇各種體育活動項目的學生人數(shù),隨機抽取了部分學生進行調(diào)查,并將通過調(diào)查獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:

(1)這次活動一共調(diào)查了名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于度;
(4)若該學校有1500人,請你估計該學校選擇足球項目的學生人數(shù)約是人.

查看答案和解析>>

同步練習冊答案