已知⊙O1和⊙O2的半徑分別為1和4,如果兩圓的位置關系為相交,那么圓心距O1O2的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
【答案】分析:根據(jù)兩圓的位置關系是相交,則這兩個圓的圓心距d大于兩半徑之差小于兩半徑之和,從而解決問題.
解答:解:∵4-1=3,4+1=5,
∴3<p<5,
∴數(shù)軸上表示為A.
故選A.
點評:本題考查了由兩圓半徑和圓心距之間數(shù)量關系判斷兩圓位置關系的方法,設兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1和⊙O2的半徑分別為R、r,連接O1O2交⊙O1于點M、交⊙O2于點N.將一個直角三角尺的直角頂點C放在直線O1O2的上方,讓兩個直角邊所在的直線分別經過點M、N,CM交⊙O1于點A,CN交⊙O2于點B.
(1)求證:O1A∥O2B;
(2)直線AB和直線O1O2能否平行?若能夠,試指出什么條件下,AB∥O1O2;若不能,試說明理由.
(3)是否存在一點C,使CM•CA=CN•CB?若存在,請說明如何確定點C的位置,并證明你的結論;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知⊙O1和⊙O2的半徑分別為3cm和5cm,兩圓的圓心距是6cm,則兩圓的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、已知⊙O1和⊙O2的半徑分別為2cm和4cm,當圓心距O1O2的長度在
0≤O1O2<2或O1O2>6
范圍內取值時,兩圓無公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關系是
相交
相交

查看答案和解析>>

同步練習冊答案