如果關(guān)于x的一元二次方程k2x2-(2k+1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是
k>-
1
4
且k≠0
k>-
1
4
且k≠0
分析:根據(jù)一元二次方程的定義和根的判別式的意義得到k2≠0且△=(2k+1)2-4k2>0,然后求出兩個(gè)不等式解的公共部分即可.
解答:解:根據(jù)題意得k2≠0且△=(2k+1)2-4k2>0,
解得k>-
1
4
且k≠0.
故答案為k>-
1
4
且k≠0.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了一元二次方程的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.若的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

3.⑶ 探索線(xiàn)段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

【小題1】⑴ 求出一元二次函數(shù)的關(guān)系式;
【小題2】⑵ 點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.若的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
【小題3】⑶ 探索線(xiàn)段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年山東省東營(yíng)市學(xué)業(yè)水平模擬考試數(shù)學(xué)卷 題型:解答題

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

3.⑶ 探索線(xiàn)段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案