【題目】在下列條件中,△ABC不是直角三角形的是 (  )

A. b2=a2-c2 B. ∠A:∠B:∠C=3:4:5

C. ∠C=∠A-∠B D. a2:b2:c2=1:3:2

【答案】B

【解析】A根據(jù)勾股定理的逆定理,如果b2=a2c2,那么a2=b2+c2,則ABC為直角三角形,故本選項(xiàng)錯(cuò)誤;

B∵∠ABC=345,∴∠A=180°×=45°,B=180°×=60°,C=180°×=75°,ABC不是直角三角形,故本選項(xiàng)正確.

C∵∠C=∠A﹣∠B∴∠A=∠B+∠C,∴∠A=90°ABC是直角三角形,故本選項(xiàng)錯(cuò)誤;

D根據(jù)勾股定理的逆定理,如果a2b2c2=132,那么b2=a2+c2,則ABC為直角三角形,故本選項(xiàng)錯(cuò)誤;

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)原點(diǎn),與軸的另一個(gè)交點(diǎn)為,將拋物線向右平移個(gè)單位得到拋物線, 軸于, 兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),交軸于點(diǎn)

)求拋物線的解析式及頂點(diǎn)坐標(biāo).

)以為斜邊向上作等腰直角三角形,當(dāng)點(diǎn)落在拋物線的對(duì)稱(chēng)軸上時(shí),求拋物線的解析式.

)若拋物線的對(duì)稱(chēng)軸存在點(diǎn),使為等邊三角形,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格):

(1)畫(huà)出△ABCBC邊上的高AD;

(2)畫(huà)出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;

(3)畫(huà)一個(gè)△BCP(要求各頂點(diǎn)在格點(diǎn)上,P不與A點(diǎn)重合),使其面積等于△ABC的面積.并回答,滿(mǎn)足這樣條件的點(diǎn)P________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過(guò)M作MECD于點(diǎn)E,1=2.

(1)若CE=1,求BC的長(zhǎng);

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-3≤x≤0范圍內(nèi),二次函數(shù)y=ax2+bx+c(a≠0)的圖像如圖所示.在這個(gè)范圍內(nèi),下列結(jié)論:①y有最大值1,沒(méi)有最小值;②當(dāng)-3<x<-1時(shí),y隨著x的增大而增大;③方程ax2+bx+c-=0有兩個(gè)不相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)是

A. 0個(gè) B. 1個(gè)

C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(1,0),點(diǎn)的橫坐標(biāo)為2,將點(diǎn) 點(diǎn)P旋轉(zhuǎn),使它的對(duì)應(yīng)點(diǎn)恰好落在軸上(不與點(diǎn)重合);再將點(diǎn)點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn).

(1)直接寫(xiě)出點(diǎn)和點(diǎn)C的坐標(biāo);

(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作BOC,使BOCABO全等,則點(diǎn)C坐標(biāo)為________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑 ,點(diǎn)C在⊙O上,過(guò)點(diǎn)OBC于點(diǎn)E,交⊙O于點(diǎn)D,CDAB.

(1)求證:EOD的中點(diǎn);

(2)CB=6,求四邊形CAOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAB上一動(dòng)點(diǎn)(不與A,B重合),對(duì)角線ACBD相交于點(diǎn)O,過(guò)點(diǎn)P分別作ACBD的垂線,分別交AC,BD于點(diǎn)EF,交AD,BC于點(diǎn)M,N.下列結(jié)論:①△APE≌△AME;PM+PN=ACPE2+PF2=PO2;④△POF∽△BNF當(dāng)PMN∽△AMP時(shí),點(diǎn)PAB的中點(diǎn).其中正確的結(jié)論的個(gè)數(shù)有( 。﹤(gè).

A.5 B.4 C.3 D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案