【題目】如圖,已知是半圓的直徑,點(diǎn)是半圓上一點(diǎn),連結(jié),并延長(zhǎng)到點(diǎn),使PC =,連結(jié)

求證:

,

①求弦的長(zhǎng).②求陰影部分的面積.

【答案】(1)證明見(jiàn)解析;(2)①;②

【解析】

1)連接AP,由圓周角定理可知∠APB=90°,APBC再由PC=PB即可得出結(jié)論;

2①先根據(jù)直角三角形的性質(zhì)求出AP的長(zhǎng)再由勾股定理可得出PB的長(zhǎng);

②連接OP根據(jù)直角三角形的性質(zhì)求出△PAB的度數(shù),由圓周角定理求出∠POB的長(zhǎng)根據(jù)S陰影=S扇形BOPSPOB即可得出結(jié)論

1)連接AP

AB是半圓O的直徑,∴∠APB=90°,APBC

PC=PB,∴△ABC是等腰三角形AB=AC;

2①∵∠APB=90°,AB=4,ABC=30°,AP=AB=2,BP===2;

②連接OP

∵∠ABC=30°,∴∠POA=60°,∴∠POB=120°.

∵點(diǎn)O時(shí)AB的中點(diǎn),SPOB=SPAB=×APPB=×2×2=,S陰影=S扇形BOPSPOB

=

=π﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一斜坡坡頂處的同一水平線上有一古塔,為測(cè)量塔高,數(shù)學(xué)老師帶領(lǐng)同學(xué)在坡腳處測(cè)得斜坡的坡角為,且,塔頂處的仰角為,他們沿著斜坡攀行了米,到達(dá)坡頂處,在處測(cè)得塔頂的仰角為

(1)求斜坡的高度;

(2)求塔高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°,CD=1,求BD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線y=2x+2與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M(a,4).

(1)求反比例函數(shù)y=(x>0)的表達(dá)式;

(2)若點(diǎn)C在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D在x軸上,當(dāng)四邊形ABCD是平行四邊形時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A-3,3),B-5,1),C-2,0),Pab)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過(guò)平移后得到△A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1a+6,b-2).

1)直接寫出點(diǎn)A1,B1,C1的坐標(biāo).

2)在圖中畫出△A1B1C1

3)連接AA1,求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE∠BAC的外角平分線AD相交于點(diǎn)P,分別交ACBC的延長(zhǎng)線于E,D.過(guò)PPF⊥ADAC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AFDH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC45°,ADBE分別為BC,AC邊上的高,連接DE,過(guò)點(diǎn)DDFDEBE于點(diǎn)F,GBE中點(diǎn),連接AF,DG

1)如圖1,若點(diǎn)F與點(diǎn)G重合,求證:AFDF;

2)如圖2,請(qǐng)寫出AFDG之間的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 直線x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段ABOB的中點(diǎn), 點(diǎn)POA上一動(dòng)點(diǎn), 當(dāng)PC+PD最小時(shí), 點(diǎn)P的坐標(biāo)為(

A.-4,0B.-1,0C.(-2,0)D.(-3,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案