【題目】已知y2x成正比例,當(dāng)x2時,y6

1)求yx之間的函數(shù)解析式.

2)在所給直角坐標(biāo)系中畫出函數(shù)圖象.

3)由函數(shù)圖象直接寫出當(dāng)﹣2y2時,自變量x的取值范圍.

【答案】1y2x2;(2)如圖見解析;(3)-2x0。

【解析】

1)根據(jù)正比例的定義設(shè)y-2=kxk0),然后把已知數(shù)據(jù)代入進行計算求出k值,即可得解;
2)利用描點法法作出函數(shù)圖象即可;
3)根據(jù)圖象可得結(jié)論.

(解:(1)∵y-2x成正比例,
∴設(shè)y-2=kxk0),
∵當(dāng)x=2時,y=6,
6-2=2k,
解得k=2,
y-2=2x
函數(shù)關(guān)系式為:y=2x+2;

2)當(dāng)x=0時,y=2,
當(dāng)y=0時,2x+2=0,解得x=-1,
所以,函數(shù)圖象經(jīng)過點(0,2),(-1,0),
同理,該函數(shù)圖象還經(jīng)過點(14),(-2-2),(-3-4).
函數(shù)圖象如圖:


3)由圖象得:當(dāng)-2y2時,自變量x的取值范圍是:-2x0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點,過點O的直線分別與AB、CD交于點EF,連結(jié)BFAC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由一個角為60°且邊長為1的菱形組成的網(wǎng)格,每個菱形的頂點稱為格點,點A,B,C都在格點上,則tan∠BAC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場采購員要到廠家批發(fā)購買籃球和排球共個,籃球個數(shù)不少于排球個數(shù),付款總額不得超過元,已知兩種球廠的批發(fā)價和商場的零售價如下表. 設(shè)該商場采購個籃球.

品名

廠家批發(fā)價/元/個

商場零售價/元/個

籃球

排球

1)求該商場采購費用(單位:元)與(單位:個)的函數(shù)關(guān)系式,并寫出自變最的取值范圍:

2)該商場把這個球全都以零售價售出,求商場能獲得的最大利潤;

3)受原材料和工藝調(diào)整等因素影響,采購員實際采購時,低球的批發(fā)價上調(diào)了元/個,同時排球批發(fā)價下調(diào)了元/個.該體有用品商場決定不調(diào)整商場零售價,發(fā)現(xiàn)將個球全部賣出獲得的最低利潤是元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是   ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2△ABC位似,且位似比為2:1,點C2的坐標(biāo)是   

(3)△A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:

1)分別寫出第6、7兩個圖形各有多少顆黑色棋子?

2)寫出第n個圖形黑色棋子的顆數(shù)?

3)是否存在某個圖形有1020顆黑色棋子?若存在,求出是第幾個圖形;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,矩形OABC放置于平面直角坐標(biāo)系中,點O與原點重合,點Ax軸正半軸上,點Cy軸正半軸上,點B的坐標(biāo)為(6,3),點D是邊BC上的一動點,連接OD,作點C關(guān)于直線OD的對稱點C′.

(1)若點C、C′、A在一直線上時,求點D的坐標(biāo);

(2)若點C′到矩形兩對邊所在直線距離之比為1:2時,求點C′的坐標(biāo);

(3)若連接BC′,則線段BC′的長度范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以Rt△ABC的直角邊AB為直徑作圓O,與斜邊交于點D,E為BC邊上的中點,連接DE.

(1)求證:DE是⊙O的切線;

(2)連接OE,AE,當(dāng)∠CAB為何值時,四邊形AOED是平行四邊形?并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-2x+6x軸交于點A,與直線y=x交于點B.

(1)A坐標(biāo)為_____________.

(2)動點M從原點O出發(fā),以每秒1個單位長度的速度沿著O→A的路線向終點A勻速運動,過點MMPx軸交直線y=x于點P,然后以MP為直角邊向右作等腰直角MPN.設(shè)運動t秒時,ΔMPNΔOAB重疊部分的面積為S.St之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案