已知:如圖,點(diǎn)E,F(xiàn),P,Q分別是正方形ABCD的四條邊上的點(diǎn),并且AF=BP=CQ=DE.
求證:(1)EF=FP=PQ=QE;
(2)四邊形EFPQ是正方形.
分析:(1)由四邊形ABCD是正方形,∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,又由AF=BP=CQ=DE,即可得DF=CE=BQ=AP,然后利用SAS即可證得△APF≌△DFE≌△CEQ≌△BQP,即可證得EF=FP=PQ=QE;
(2)由EF=FP=PQ=QE,可判定四邊形EFPQ是菱形,又由△APF≌△BPQ,易得∠FPQ=90°,即可證得四邊形EFPQ是正方形.
解答:證明:(1)∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,
∵AF=BP=CQ=DE,
∴DF=CE=BQ=AP,
在△APF和△DFE和△CEQ和△BQP中,
AF=DE=CQ=BP
∠A=∠D=∠C=∠B
AP=DF=CE=BQ
,
∴△APF≌△DFE≌△CEQ≌△BQP(SAS),
∴EF=FP=PQ=QE;

(2)∵EF=FP=PQ=QE,
∴四邊形EFPQ是菱形,
∵△APF≌△BQP,
∴∠AFP=∠BPQ,
∵∠AFP+∠APF=90°,
∴∠APF+∠BPQ=90°,
∴∠FPQ=90°,
∴四邊形EFPQ是正方形.
點(diǎn)評(píng):此題考查了正方形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意解題的關(guān)鍵是證得△APF≌△DFE≌△CEQ≌△BQP.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知:如圖,點(diǎn)O為?ABCD的對(duì)角線BD的中點(diǎn),直線EF經(jīng)過(guò)點(diǎn)O,分別交BA、DC的延長(zhǎng)線于點(diǎn)E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)A、B分別在x軸、y軸上,以O(shè)A為直徑的⊙P交AB于點(diǎn)C(-
2
5
4
5
)
,E為直徑精英家教網(wǎng)OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合).EF⊥AB于點(diǎn)F,交y軸于點(diǎn)G.設(shè)點(diǎn)E的橫坐標(biāo)為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)A、B、C、D在同一條直線上,EA⊥AD,F(xiàn)D⊥AD,AE=DF,AB=DC.BF,CE相交于點(diǎn)O.
(1)求證:∠ACE=∠DBF;
(2)若點(diǎn)B是AC的中點(diǎn),∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm,PT切⊙O于T,過(guò)P點(diǎn)作⊙O的割線PAB,(PB>PA).設(shè)PA=x,PB=y,求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點(diǎn)E、A、C在同一條直線上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案