【題目】如圖ABC 中,AC=BC,∠ACB=120°,點(diǎn) D 在線段 AB 上運(yùn)動(dòng)(D 不與 A、B 重合),連接 CD,作∠CDE=30°,DE BC 于點(diǎn) E,若CDE 是等腰三角形,則∠ADC 的度數(shù)是___________.

【答案】60°105°

【解析】

分類討論:當(dāng)CD=DE時(shí);當(dāng)DE=CE時(shí);當(dāng)EC=CD時(shí);然后利用等腰三角形的性質(zhì)和三角形的內(nèi)角和定理進(jìn)行計(jì)算.

CDE可以是等腰三角形,
∵△CDE是等腰三角形;
①當(dāng)CD=DE時(shí),
∵∠CDE=30°,
∴∠DCE=DEC=75°
∴∠ADC=B+DCE=105°,
②當(dāng)DE=CE時(shí),∵∠CDE=30°,
∴∠DCE=CDE=30°
∴∠ADC=DCE+B=60°.
③當(dāng)EC=CD時(shí),
BCD=180°CEDCDE=180°30°30°=120°
∵∠ACB=180°AB=120°,
∴此時(shí),點(diǎn)D與點(diǎn)A重合,不合題意.
綜上,ADC可以是等腰三角形,此時(shí)∠ADC的度數(shù)為60°105°.
故答案為60°105°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體敞口玻璃罐,長(zhǎng)、寬、高分別為16 cm6 cm6 cm,在罐內(nèi)點(diǎn)E處有一小塊餅干碎末,此時(shí)一只螞蟻正好在罐外壁,在長(zhǎng)方形ABCD中心的正上方2 cm處,則螞蟻到達(dá)餅干的最短距離是多少cm.(  )

A. 7B.

C. 24D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在第1個(gè)ABA1,B=40°,BAA1=∠BA1A,A1B上取一點(diǎn)C,延長(zhǎng)AA1A2,使得在第2個(gè)A1CA2,A1CA2=∠A1 A2C;A2C上取一點(diǎn)D,延長(zhǎng)A1A2A3使得在第3個(gè)A2DA3,A2DA3=∠A2 A3D;,按此做法進(jìn)行下去3個(gè)三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 ;n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時(shí),水面寬4m,水面下降2.5m,水面寬度增加( 。

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,并解決問(wèn)題:

如圖等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)AB、C的距離分別為3,4,5,求的度數(shù).為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí),這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出______;

基本運(yùn)用

請(qǐng)你利用第題的解答思想方法,解答下面問(wèn)題:已知如圖,中,,E、FBC上的點(diǎn)且,求證:

能力提升

如圖,在中,,,點(diǎn)O內(nèi)一點(diǎn),連接AO,BO,CO,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長(zhǎng)線于點(diǎn)POF∥BCACAC點(diǎn)E,交PC于點(diǎn)F,連接AF

1)判斷AF⊙O的位置關(guān)系并說(shuō)明理由;

2)若⊙O的半徑為4AF=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=60°,∠ACB=50°,延長(zhǎng)CB至點(diǎn)D,使DB=BA,延長(zhǎng)BC至點(diǎn)E,使CE=CA,連接AD,AE. 求∠DAE的度數(shù)

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ADE中,∠ADE=90°,點(diǎn)BAE的中點(diǎn),過(guò)點(diǎn)DDCAE,DC=AB,連結(jié)BD、CE.

(1)求證:四邊形BDCE是菱形;

(2)若AD=8,BD=6,求菱形BDCE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案