【題目】如圖△ABC 中,AC=BC,∠ACB=120°,點(diǎn) D 在線段 AB 上運(yùn)動(dòng)(D 不與 A、B 重合),連接 CD,作∠CDE=30°,DE 交 BC 于點(diǎn) E,若△CDE 是等腰三角形,則∠ADC 的度數(shù)是___________.
【答案】60°或105°
【解析】
分類討論:當(dāng)CD=DE時(shí);當(dāng)DE=CE時(shí);當(dāng)EC=CD時(shí);然后利用等腰三角形的性質(zhì)和三角形的內(nèi)角和定理進(jìn)行計(jì)算.
△CDE可以是等腰三角形,
∵△CDE是等腰三角形;
①當(dāng)CD=DE時(shí),
∵∠CDE=30°,
∴∠DCE=∠DEC=75°,
∴∠ADC=∠B+∠DCE=105°,
②當(dāng)DE=CE時(shí),∵∠CDE=30°,
∴∠DCE=∠CDE=30°,
∴∠ADC=∠DCE+∠B=60°.
③當(dāng)EC=CD時(shí),
∠BCD=180°∠CED∠CDE=180°30°30°=120°
∵∠ACB=180°∠A∠B=120°,
∴此時(shí),點(diǎn)D與點(diǎn)A重合,不合題意.
綜上,△ADC可以是等腰三角形,此時(shí)∠ADC的度數(shù)為60°或105°.
故答案為60°或105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體敞口玻璃罐,長(zhǎng)、寬、高分別為16 cm、6 cm和6 cm,在罐內(nèi)點(diǎn)E處有一小塊餅干碎末,此時(shí)一只螞蟻正好在罐外壁,在長(zhǎng)方形ABCD中心的正上方2 cm處,則螞蟻到達(dá)餅干的最短距離是多少cm.( )
A. 7B.
C. 24D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在第1個(gè)△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一點(diǎn)C,延長(zhǎng)AA1到A2,使得在第2個(gè)△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一點(diǎn)D,延長(zhǎng)A1A2到A3,使得在第3個(gè)△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法進(jìn)行下去,第3個(gè)三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 ;第n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時(shí),水面寬4m,水面下降2.5m,水面寬度增加( 。
A. 1 m B. 2 m C. 3 m D. 6 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,并解決問(wèn)題:
如圖等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求的度數(shù).為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí)≌,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出______;
基本運(yùn)用
請(qǐng)你利用第題的解答思想方法,解答下面問(wèn)題:已知如圖,中,,,E、F為BC上的點(diǎn)且,求證:;
能力提升
如圖,在中,,,,點(diǎn)O為內(nèi)一點(diǎn),連接AO,BO,CO,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說(shuō)明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=60°,∠ACB=50°,延長(zhǎng)CB至點(diǎn)D,使DB=BA,延長(zhǎng)BC至點(diǎn)E,使CE=CA,連接AD,AE. 求∠DAE的度數(shù)
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ADE中,∠ADE=90°,點(diǎn)B是AE的中點(diǎn),過(guò)點(diǎn)D作DC∥AE,DC=AB,連結(jié)BD、CE.
(1)求證:四邊形BDCE是菱形;
(2)若AD=8,BD=6,求菱形BDCE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com