如圖,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,,,P、Q分別是邊AB、CD上的動點(點P不與點A、點B重合),且有BP=2CQ。
(1)求AB的長;
(2)設(shè),四邊形PADQ的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍。
(3)以C為圓心、CQ為半徑作⊙C ,以P為圓心、以PA的長為半徑作⊙P。當(dāng)四邊形PADQ是平行四邊形時,試判斷⊙C與⊙P的位置關(guān)系,并說明理由。

解:(1)作DH⊥AB,
       在Rt△AHD中,
       ∴,
       ∴。

(2)依題意,當(dāng)時,則
    ∴,
    ∴
          
(3)當(dāng)四邊形PADQ是平行四邊形時,
     DQ=AP,
  即
  ∴x=3,
  ∴⊙C的半徑CQ=3,⊙P的半徑PA=12-2x=6,
  在Rt△PBC中,∠B=90°,
  ∴,
  ∴,
即兩圓半徑之和等于圓心距,所以⊙C與⊙P外切。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對角線OC、AB交于點D,點E、F、G分別是CD、BD、BC的中點,以O(shè)為原點,直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個點中與點A在同一反比例函數(shù)圖象上的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分線EF交AD于G,交BA的延長線于F,且∠D=45°,求BF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
5
,tanA=
5
,P、Q分別是邊AB、CD上的動點(點P不與點A、點B重合),且有BP=2CQ.
(1)求AB的長;
(2)設(shè)CQ=x,四邊形PADQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以C為圓心、CQ為半徑作⊙C,以P為圓心、以PA的長為半徑作⊙P.當(dāng)四邊形PADQ是平行四邊形時,試判斷⊙C與⊙P的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一點P,使△ABP∽△DCP,求出BP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對角線OC、AB交于點D,點E、F、G分別是CD、BD、BC的中點,以O(shè)為原點,直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個點中與點A在同一反比例函數(shù)圖象上的是點
(18,6)
(18,6)

查看答案和解析>>

同步練習(xí)冊答案