【題目】如圖,AB是半圓O的直徑,點P在BA的延長線上,PD切⊙O于點C,BD⊥PD,垂足為D,連接BC.
(1)求證:BC平分∠PDB;
(2)求證:BC2=ABBD;
(3)若PA=6,PC=6,求BD的長.
【答案】(1)證明見解析;(2)證明見解析;(3)4.
【解析】
試題分析:(1)連接OC,由PD為圓O的切線,利用切線的性質(zhì)得到OC垂直于PD,由BD垂直于PD,得到OC與BD平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OC=OB,利用等邊對等角得到一對角相等,等量代換即可得證;
(2)連接AC,由AB為圓O的直徑,利用直徑所對的圓周角為直角得到△ABC為直角三角形,根據(jù)一對直角相等,以及第一問的結(jié)論得到一對角相等,確定出△ABC與△BCD相似,由相似得比例,變形即可得證;
(3)由切割線定理列出關(guān)系式,將PA,PC的長代入求出PB的長,由PB-PA求出AB的長,確定出圓的半徑,由OC與BD平行得到△PCO與△DPB相似,由相似得比例,將OC,OP,以及PB的長代入即可求出BD的長.
試題解析:(1)連接OC,
∵PD為圓O的切線,
∴OC⊥PD,
∵BD⊥PD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBD=∠OBC,
則BC平分∠PBD;
(2)連接AC,
∵AB為圓O的直徑,
∴∠ACB=90°,
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,
∴△ABC∽△CBD,
∴,即BC2=ABBD;
(3)∵PC為圓O的切線,PAB為割線,
∴PC2=PAPB,即72=6PB,
解得:PB=12,
∴AB=PB-PA=12-6=6,
∴OC=3,PO=PA+AO=9,
∵△OCP∽△BDP,
∴,即,
則BD=4.
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)大連市公安局統(tǒng)計,2016年全市約有410000人換二代居民身份證,將410000用科學記數(shù)法表示應(yīng)為( )
A.0.41×104 B.41×104 C.4.1×106 D.4.1×105
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列等式從左到右的變形中,是因式分解的是( )
A. x2-9+6x=(x+3)(x-3)+6x B. 6ab=2a·3b
C. x2-8x+16=(x-4)2 D. (x+5)(x-2)=x2+3x-10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級(2)班(1)組女生的體重(單位:kg)為:38,40,35,36,65,42,42,則這組數(shù)據(jù)的中位數(shù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com