【題目】如圖是一座跨河拱橋,橋拱是圓弧形,跨度AB為16米,拱高CD為4米.
(1)求橋拱的半徑R.
(2)若大雨過后,橋下水面上升到EF的位置,且EF的寬度為12米,求拱頂C到水面EF的高度.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(m,2),B(n,2)分別是反比例函數(shù)y=﹣,y=在x軸上方的圖象上的點,點P是x軸上的動點,則PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+4與反比例函數(shù)y=的圖象相交于A(-3,a)和B兩點.
(1)求k的值;
(2)直線y=m(m>0)與直線AB相交于點M,與反比例函數(shù)的圖象相交于點N.若MN=4,求m的值;
(3)直接寫出不等式>x的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點(-2,0),(x0,0),1<x0<2,與y軸的負半軸相交,且交點在(0,-2)的上方,下列結論:
①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正確結論是 _________(填正確序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張正方形紙片的4個角剪去4個大小一樣的小正方形,然后折起來就可以制成一個無蓋的長方體紙盒,設這個正方形紙片的邊長為a,這個無蓋的長方體盒子高為h.
(1)若a=18cm,h=4cm,則這個無蓋長方體盒子的底面面積為 ;
(2)用含a和h的代數(shù)式表示這個無蓋長方體盒子的容積V= ;
(3)若a=18cm,試探究:當h越大,無蓋長方體盒子的容積V就越大嗎?請舉例說明;這個無蓋長方體盒子的最大容積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=2x2-4x-6與x軸交于點A、B,與y軸交于點C.有下列說法:①拋物線的對稱軸是x=1;②A、B兩點之間的距離是4;③△ABC的面積是24;④當x<0時,y隨x的增大而減。渲,說法正確的是_________________.(只需填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強沿著正對這兩棵樹的方向從左向右前進,如果小強的眼睛與地面的距離為1.6 m,當小強與樹AB的距離小于多少時,就不能看到樹CD的樹頂D?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖1所示,成本y2與銷售月份x之間的關系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.
(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,線段OD=OC.
(1)求拋物線的解析式;
(2)拋物線上是否存在點M,使得⊿CDM是以CD為直角邊的直角三角形?若存在,請求出M點的坐標;若不存在,請說明理由.
(3)將直線CD繞點C逆時針方向旋轉45°所得直線與拋物線相交于另一點E,,連接QE.若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com