【題目】如圖,直線與x軸交于點(diǎn),與y軸交于點(diǎn)B,拋物線經(jīng)過(guò)點(diǎn).
求k的值和拋物線的解析式;
為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn).
若以為頂點(diǎn)的四邊形OBNP是平行四邊形時(shí),求m的值.
連接BN,當(dāng)時(shí),求m的值.
【答案】(1),(2)①或②與
【解析】試題分析:(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得k,則可求得B點(diǎn)坐標(biāo),由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)①由M點(diǎn)坐標(biāo)可表示P、N的坐標(biāo),從而可表示出PN的長(zhǎng),根據(jù)平行四邊形的性質(zhì)得:OB=PN=2,列方程解出即可;
②有兩解,N點(diǎn)在AB的上方或下方,作輔助線,構(gòu)建等腰直角三角形,由∠PBN=45° 得∠GBP=45°,設(shè)GH=BH=t,則由△AHG∽△AOB,得AH=t,GA=,根據(jù)AB=AH+BH=t+t=,可得BG和BN的解析式,分別與拋物線聯(lián)立方程組,可得結(jié)論.
試題解析:解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,
∴直線AB的解析式為:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入拋物線y=﹣x2+bx+c中,則,解得:,二次函數(shù)的表達(dá)式為:y=﹣;
(2)①如圖1,設(shè)M(m,0),則P(m,m+2),N(m,﹣)
∴PN=yN﹣yP=(﹣)﹣(﹣m+2)=﹣+4m,由于四邊形OBNP為平行四邊形得PN=OB=2,
∴+4m=2,解得:m=或
②有兩解,N點(diǎn)在AB的上方或下方,如圖2,過(guò)點(diǎn)B作BN的垂線交x軸于點(diǎn)G,過(guò)點(diǎn)G作BA的垂線,垂足為點(diǎn)H.
由∠PBN=45° 得∠GBP=45°,∴GH=BH,設(shè)GH=BH=t,則由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,從而OG=OA﹣AG=3﹣=,即G(,0)
由B(0,2),G(,0)得:
直線BG:y=﹣5x+2,直線BN:y=0.2x+2.
則,解得:x1=0(舍),x2=,即m=;
則,解得:x1=0(舍),x2=;即m=;
故m= 與m=為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長(zhǎng)是8cm.
求:(1)兩條對(duì)角線的長(zhǎng)度;(2)菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知張強(qiáng)家、體育場(chǎng)、文具店在同一直線上,下面的圖象反映的過(guò)程是:張強(qiáng)從家跑步去體育場(chǎng),在那里鍛煉了一陣后又走到文具店去買(mǎi)筆,然后散步走回家.圖中表示時(shí)間,表示張強(qiáng)離家的距離.
根據(jù)圖象解答下列問(wèn)題:
(1)體育場(chǎng)離張強(qiáng)家多遠(yuǎn)?張強(qiáng)從家到體育場(chǎng)用了多少時(shí)間?
(2)體育場(chǎng)離文具店多遠(yuǎn)?
(3)張強(qiáng)在文具店停留了多少時(shí)間?
(4)求張強(qiáng)從文具店回家過(guò)程中與的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)把(a﹣b)2看成一個(gè)整體,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的結(jié)果是 ;
(2)已知a+b=5(a﹣b),代數(shù)式= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)E、F分別為AD、DC上的動(dòng)點(diǎn),∠EBF=60°,點(diǎn)E從點(diǎn)A向點(diǎn)D運(yùn)動(dòng)的過(guò)程中,AE+CF的長(zhǎng)度( )
A. 逐漸增加 B. 逐漸減小
C. 保持不變且與EF的長(zhǎng)度相等 D. 保持不變且與AB的長(zhǎng)度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2).請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)該班共有 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為 ;
(4)若全校有2000名學(xué)生,則“其他”部分的學(xué)生人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=5,AB=3.若M為射線AD上的一個(gè)動(dòng)點(diǎn),將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點(diǎn)所對(duì)應(yīng)的AM長(zhǎng)度的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)市場(chǎng)批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場(chǎng)行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷(xiāo)售利潤(rùn) (萬(wàn)元)與進(jìn)貨量 (t)近似滿足函數(shù)關(guān)系;乙種水果的銷(xiāo)售利潤(rùn) (萬(wàn)元)與進(jìn)貨量 (t)近似滿足函數(shù)關(guān)系 (其中, 、為常數(shù)),且進(jìn)貨量為1t時(shí),銷(xiāo)售利潤(rùn)為1. 4萬(wàn)元;進(jìn)貨量為2t時(shí),銷(xiāo)售利潤(rùn)為2. 6萬(wàn)元.
(1)求 (萬(wàn)元)與 (t)之間的函數(shù)關(guān)系式;
(2)如果市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共10t,設(shè)乙種水果的進(jìn)貨量為 (t),請(qǐng)你寫(xiě)出這兩種水果所獲得的銷(xiāo)售利潤(rùn)之和 (萬(wàn)元)與 (t)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷(xiāo)售利潤(rùn)之和最大,最大利潤(rùn)是多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com