【題目】如圖,AB是⊙O的直徑,過(guò)點(diǎn)A的直線PC交⊙O于A,C兩點(diǎn),AD平分∠PAB,射線AD交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥PA于點(diǎn)E.
(1)求證:ED為⊙O的切線;
(2)若AB=10,ED=2AE,求AC的長(zhǎng).
【答案】(1)ED為⊙O的切線,見(jiàn)解析;(2)6
【解析】
(1)連接AD,根據(jù)角平分線的定義得到∠DAE=∠DAO,得到∠ODA=∠DAE,根據(jù)平行線的性質(zhì)得到OD⊥DE,于是得到結(jié)論;
(2)過(guò)O作OH⊥PC,則四邊形EHOD是矩形,求得OH=DE,EH=OD,設(shè)AE=x,則DE=2x,根據(jù)勾股定理列方程即可得到結(jié)論.
解:(1)連接AD,∵AD平分∠PAB,
∴∠DAE=∠DAO,
∵OD=OA,
∴∠ODA=∠OAD,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AE,
∴OD⊥DE,
∴ED為⊙O的切線;
(2)過(guò)O作OH⊥PC,
則四邊形EHOD是矩形,
∴OH=DE,EH=OD,
∵AB=10,
∴EH=OD=5,
∵ED=2AE,
∴設(shè)AE=x,則DE=2x,
∴AH=5﹣x,OH=2x,
∵OA2=AH2+OH2,
∴52=(5﹣x)2+(2x)2,
解得:x=2,x=0(不合題意舍去),
∴AE=2,AH=3,
∴AC=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3).
(1)求二次函數(shù)解析式;
(2)若點(diǎn)Q為拋物線上一點(diǎn),且S△ABQ=S△ACQ,求點(diǎn)Q的坐標(biāo);
(3)若直線l:y=mx+n與拋物線有兩個(gè)交點(diǎn)M,N(M在N的左邊),P為拋物線上一動(dòng)點(diǎn)(不與M,N重合).過(guò)P作PH平行于y軸交直線l于點(diǎn)H,若=5,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】萬(wàn)州區(qū)某民營(yíng)企業(yè)生產(chǎn)的甲、乙兩種產(chǎn)品,已知2件甲商品的出廠總價(jià)與3件乙商品的出廠總價(jià)相同,3件甲商品的出廠總價(jià)比2件乙商品的出廠總價(jià)多150元.
(1)求甲、乙商品的出廠單價(jià)分別是多少元?
(2)為促進(jìn)萬(wàn)州經(jīng)濟(jì)持續(xù)健康發(fā)展,為商家搭建展示平臺(tái),為行業(yè)創(chuàng)造交流機(jī)會(huì),2019年萬(wàn)州區(qū)舉辦了多場(chǎng)商品展銷會(huì).外地一經(jīng)銷商計(jì)劃購(gòu)進(jìn)甲商品200件,購(gòu)進(jìn)乙商品的數(shù)量是甲的4倍,恰逢展銷會(huì)期間該企業(yè)正在對(duì)甲商品進(jìn)行降價(jià)促銷活動(dòng),甲商品的出廠單價(jià)降低了,該經(jīng)銷商購(gòu)進(jìn)甲的數(shù)量比原計(jì)劃增加了,乙的出廠單價(jià)沒(méi)有改變,該經(jīng)銷商購(gòu)進(jìn)乙的數(shù)量比原計(jì)劃減少了,結(jié)果該經(jīng)銷商付出的總貨款與原計(jì)劃的總貨款恰好相同,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是原點(diǎn),四邊形是矩形,點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為.
(1)如圖①,當(dāng)點(diǎn)落在邊上時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)落在線段上時(shí),與交于點(diǎn).求點(diǎn)的坐標(biāo);
(3)記為矩形對(duì)角線的交點(diǎn),為的面積,求的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知扇形AOB的圓心角為150°,半徑OA為2,則A到OB的距離為_____,若點(diǎn)C是扇形AOB弧AB上一點(diǎn).則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線交 y軸于點(diǎn)為A,頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H.
(1)求頂點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)拋物線過(guò)點(diǎn)(1,-2),且不經(jīng)過(guò)第一象限時(shí),平移此拋物線到拋物線的位置,求平移的方向和距離;
(3)當(dāng)拋物線頂點(diǎn)D在第二象限時(shí),如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等邊三角形ABC中,CD為中線,點(diǎn)Q在線段CD上運(yùn)動(dòng),將線段QA繞點(diǎn)Q順時(shí)針旋轉(zhuǎn),使得點(diǎn)A的對(duì)應(yīng)點(diǎn)E落在射線BC上,連接BQ,設(shè)∠DAQ=α
(0°<α<60°且α≠30°).
(1)當(dāng)0°<α<30°時(shí),
①在圖1中依題意畫出圖形,并求∠BQE(用含α的式子表示);
②探究線段CE,AC,CQ之間的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)30°<α<60°時(shí),直接寫出線段CE,AC,CQ之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖1,在中,,,,若為的中點(diǎn),交與點(diǎn).
(1)求的長(zhǎng).
(2)如圖2,點(diǎn)為射線上一動(dòng)點(diǎn),連接,線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)交直線與點(diǎn).
①若時(shí),求的長(zhǎng):
②如圖3,連接交直線與點(diǎn),當(dāng)為等腰三角形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)等腰三角形的三邊長(zhǎng)均滿足方程x2-6x+8=0,則此三角形的周長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com