【題目】如圖,在△ABC中,ABAC,BC是經(jīng)過⊙H的圓心,交⊙H于點D、EAB、AC是圓的切線,F、G是切點.

1)求證:BHCH;

2)填空:①當(dāng)∠FHG   時,四邊形FHCG是平行四邊形;

②當(dāng)∠FED   時,四邊形AFHG是正方形.

【答案】1)見解析;(2)①90°;②22.5°

【解析】

1)證明BFH≌△CGH可得結(jié)論.

2)①當(dāng)∠FHG90°時,四邊形FHCG是平行四邊形.分別證明FGCHFHCG即可.

②當(dāng)∠FED22.5°時,四邊形AFHG是正方形.連接EF,首先證明∠AFH=∠FHG=∠AGH90°,推出四邊形AFHG是矩形,再根據(jù)HFHG推出四邊形AFHG是正方形.

1)證明:∵ABAC,

∴∠B=∠C

ABAC是⊙H的切線,

∴∠BFH=∠CGH90°

HFHG,

∴△BFH≌△CGHAAS),

BHCH

2)解:①當(dāng)∠FHG90°時,四邊形FHCG是平行四邊形.

理由:∵△BFH≌△CGH(已證),

BFCG,

ABAC,

AFAG

∴∠AFG=∠AGF,

∵∠B=∠C,∠A+2AGF180°,∠A+2C180°,

∴∠AGF=∠C,

,

AC是⊙H的切線,

ACHG,

∴∠FHG=∠CGH90°,

,

∴四邊形FHCG是平行四邊形.

②當(dāng)∠FE D22.5°時,四邊形AFHG是正方形.

理由:如圖1中,連接EF

,

,

∴∠FHD2FED45°,

∵△BFH≌△CGH(已證),

∴∠FHB=∠GHC45°

∴∠FHG90°,

AB,AC是⊙H的切線,

ABHF,ACHG,

∴∠AFH=∠AGH90°,

∴四邊形AFHG是矩形,

HFHG,

∴四邊形AFHG是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=90°,OM是∠AOB的平分線,將一個直角三角板的直角頂點P放在射線OM上,OP=2,移動直角三角板,兩邊分別交射線OA,OB與點CD.

1)如圖,當(dāng)點C、D都不與點O重合時,求證:PC=PD;

2)聯(lián)結(jié)CD,交OME,設(shè)CD=x,PE=y,求yx之間的函數(shù)關(guān)系式;

3)如圖,若三角板的一條直角邊與射線OB交于點D,另一直角邊與直線OA,直線OB分別交于點C,F,且△PDF與△OCD相似,求OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“一帶一路”倡議下,我國已成為設(shè)施聯(lián)通,貿(mào)易暢通的促進者,同時也帶動了我國與沿線國家的貨物交換的增速發(fā)展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運輸貨物的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖解決下面的問題:

(1)該物流園2016年貨運總量是多少萬噸?

(2)該物流園2016年空運貨物的總量是多少萬噸?并補全條形統(tǒng)計圖;

(3)求條形統(tǒng)計圖中陸運貨物量對應(yīng)的扇形圓心角的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+2a0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,拋物線經(jīng)過點D(﹣2,﹣3)和點E3,2),點P是第一象限拋物線上的一個動點.

1)求直線DE和拋物線的表達(dá)式;

2)在y軸上取點F0,1),連接PF,PB,當(dāng)四邊形OBPF的面積是7時,求點P的坐標(biāo);

3)在(2)的條件下,當(dāng)點P在拋物線對稱軸的右側(cè)時,直線DE上存在兩點M,N(點M在點N的上方),且MN2,動點Q從點P出發(fā),沿PMNA的路線運動到終點A,當(dāng)點Q的運動路程最短時,請直接寫出此時點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°AB=AC,點DBC上一動點,連接AD,過點AAEAD,并且始終保持AE=AD,連接CE

1)求證:ABD≌△ACE;

2)若AF平分∠DAEBCF,探究線段BDDFFC之間的數(shù)量關(guān)系,并證明;

3)在(2)的條件下,若BD=3CF=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過A(﹣10)、C03)、B2,3

1)求拋物線的解析式;

2)線段AB上有一動點P,過點Py軸的平行線,交拋物線于點Q,求線段PQ的最大值;

3)拋物線的對稱軸上是否存在點M,使△ABM為直角三角形?如果存在,求出點M的坐標(biāo);如果不存在,說明理由(4個坐標(biāo)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品1件和乙商品3件共需240元;購進甲商品2件和乙商品1件共需130元.

1)求甲、乙兩種商品每件的進價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點.的坐標(biāo)為(3,0),軸左側(cè)的一點.若以為頂點的四邊形為平行四邊形.則點的坐標(biāo)為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB是反比例函數(shù)yk0)圖象上的兩點,延長線段ABy軸于點C,且點B為線段AC中點,過點AADx軸于點D,點E為線段OD的三等分點,且OEDE.連接AE、BE,若SABE7,則k的值為( )

A.12B.10C.9D.6

查看答案和解析>>

同步練習(xí)冊答案