【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過(guò)一段時(shí)間原路返回,剛好在第回到家中.設(shè)小明出發(fā)第時(shí)的速度為,離家的距離為,與之間的函數(shù)關(guān)系如圖所示(圖中的空心圈表示不包含這一點(diǎn)).
(1)小明出發(fā)第時(shí)離家的距離為______m;
(2)當(dāng)時(shí),求與之間的函數(shù)表達(dá)式;
(3)直接寫出與之間的函數(shù)關(guān)系式并畫出圖象.
【答案】(1)200;(2)s=160t120(2<t≤5);(3)S=,函數(shù)圖像見(jiàn)解析
【解析】
(1)根據(jù)路程=速度×?xí)r間求出小明出發(fā)第2min時(shí)離家的距離即可;
(2)當(dāng)2<t≤5時(shí),離家的距離s=前面2min走的路程加上后面(t2)min走過(guò)的路程列式即可;
(3)根據(jù)小明是往返用了16分鐘,往返的路程是一樣的,根據(jù)往返路程相等,計(jì)算出的6.25min時(shí)小明開始往回走,再分類討論:0≤t≤2、2<t≤5、5<t≤6.25和6.25<t≤16四種情況,畫出各自的圖形即可求解.
(1)100×2=200(m).
故小明出發(fā)第2min時(shí)離家的距離為200m;
故答案為:200.
(2)當(dāng)2<t≤5時(shí),s=100×2+160(t2)=160t120.
故s與t之間的函數(shù)表達(dá)式為s=160t120(2<t≤5);
(3)設(shè)x分鐘時(shí),小明開始往回走
依題意可得100×2+160×(5-2)+80×(x-5)=80×(16-x)
解得x=6.25
當(dāng)t=6.25時(shí),s=100×2+160×(5-2)+80×(6.25-5)=780
∴當(dāng)5<t≤6.25時(shí),s=100×2+160×(5-2)+80×(t-5)=80t+280
當(dāng)6.25<t≤16時(shí),s=780-80×(t-6.25)=128080t
∴s與t之間的函數(shù)關(guān)系式為S=,
故函數(shù)圖像如圖如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,BA⊥MN,垂足為A,BA=4,點(diǎn)P是射線AN上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),∠BPC=∠BPA,BC⊥BP,過(guò)點(diǎn)C作CD⊥MN,垂足為D,設(shè)AP=x
(1)CD的長(zhǎng)度是否隨著x的變化而變化?若變化,用含x的代數(shù)式表示CD的長(zhǎng)度;若不變化,求出線段CD的長(zhǎng)度;
(2)△PBC的面積是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值,并求出此時(shí)的x的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)x取何值時(shí),△ABP和△CDP相似;
(4)如圖2,當(dāng)以C為圓心,以CP為半徑的圓與線段AB有公共點(diǎn)時(shí),求x的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.
(1)求直線的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的平行線,交直線于點(diǎn),交直線于點(diǎn),連接.
①若,求點(diǎn)的坐標(biāo);
②若的面積為,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,折疊矩形ABCD,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)F處,若BC=8,AB=6,則線段CE的長(zhǎng)度是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,點(diǎn)M是BC的中點(diǎn).點(diǎn)P從點(diǎn)M出發(fā)沿MB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B后立刻以原速度沿BM返回;點(diǎn)Q從點(diǎn)M出發(fā)以每秒1個(gè)單位長(zhǎng)的速度在射線MC上勻速運(yùn)動(dòng).在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點(diǎn)P,Q同時(shí)出發(fā),當(dāng)點(diǎn)P返回到點(diǎn)M時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)設(shè)PQ的長(zhǎng)為y,在點(diǎn)P從點(diǎn)M向點(diǎn)B運(yùn)動(dòng)的過(guò)程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍).
(2)當(dāng)BP=1時(shí),求△EPQ與梯形ABCD重疊部分的面積.
(3)隨著時(shí)間t的變化,線段AD會(huì)有一部分被△EPQ覆蓋,被覆蓋線段的長(zhǎng)度在某個(gè)時(shí)刻會(huì)達(dá)到最大值,請(qǐng)回答:該最大值能否持續(xù)一個(gè)時(shí)段?若能,直接寫出t的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,給出下列結(jié)論: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中描出下列各點(diǎn):A(3,0),B(-4,3),C(-4, -2),并解答:
(1)點(diǎn)A到原點(diǎn)O的距離是 個(gè)單位長(zhǎng)度;
(2)將點(diǎn)B向下平移__________個(gè)單位,它會(huì)與點(diǎn)C重合;
(3)連接BC,直線BC與y軸的位置關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論: ①拋物線過(guò)原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是( )
A.①②③
B.③④⑤
C.①②④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD//AB,BD平分∠ABC,CE平分∠DCF,∠ACE=90°
(1)請(qǐng)問(wèn)BD和CE是否平行?請(qǐng)你說(shuō)明理由;
(2)AC和BD有何位置關(guān)系?請(qǐng)你說(shuō)明判斷的理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com