如圖,菱形的邊長為1,;作于點,以為一邊,做第二個菱形,使;作于點,以為一邊做第三個菱形,使;依此類推,這樣做的第個菱形的邊
的長是_____________.
第一個菱形邊長為1,由題得:第二個菱形的邊長為,第三個菱形的邊長為,以此類推,第n個菱形的邊長為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(本題滿分7分)
如圖,已知是△的角平分線.
求證:.
請在下面橫線上填出推理的依據(jù):
證明:
     (已知),
   (                                 ).
     (                                ).
是△的角平分線 (               ),
     (                      ).
     (              ).
                                                     ),
    (                ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形ABCD中,已知:AD=6,DC=8,矩形EFGH的三個頂點E、G、H分別在矩形ABCD的邊AB、CD、DA上,AH=2,連接CF,設(shè)AE=x,△FCG的面積=y.
小題1:如圖1,當(dāng)四邊形EFGH為正方形時,求x和y的值;
小題2:如圖2,①求y與x之間的函數(shù)關(guān)系式與自變量的取值范圍;
②連接AC,當(dāng)EF∥AC時,求x和y的值;
③當(dāng)△CFG是直角三角形時,求x和y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題6分)如圖,四邊形ABCD中,AB=BC=2,CD=1,AD=, ∠B=90°.

(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點C是線段AB上的一個動點,△ACD和△BCE是在AB同側(cè)的兩個等邊三角形,DM,EN分別是△ACD和△BCE的高,點C在線段AB上沿著從點A向點B的方向移動(不與點A,B重合),連接DE,得到四邊形DMNE.這個四邊形的面積變化情況為(   )
A.逐漸增大B.逐漸減小
C.始終不變 D.先增大后變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)如圖,平行四邊形ABCD中,EFAC的中點O,與邊ADBC分別相交于點E、F

小題1:(1)試判斷四邊形AECF的形狀,并說明理由.
小題2:(2)若EFAC,試判斷四邊形AECF的形狀,并說明理由.
小題3:(3)請?zhí)砑右粋EFAC滿足的條件,使四邊形AECF是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時,如圖1,在BA上選取點G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實踐探究
小題1:正方形FGCH的面積是         ;(用含a, b的式子表示)
小題2:類比圖1的剪拼方法,請你就圖2—圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

小題3:聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時,此類圖形都能剪拼成正方形,且所選取的點G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(如圖5),能否剪拼成一個正方形?若能,請你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

書籍是人類進(jìn)步的階梯!為愛護(hù)書一般都將書本用封皮包好.


小題1:現(xiàn)有精裝詞典長、寬、厚尺寸如圖(1)所示(單位:cm),若按圖(2)的包書方式,將封面和封底各折進(jìn)去3cm.試用含a、b、c的代數(shù)式分別表示詞典封皮(包書紙)的長是               cm,寬是___________cm;
小題2:在如圖(4)的矩形包書紙皮示意圖中,虛線為折痕,陰影是裁剪掉的部分,四角均為大小相同的正方形,正方形的邊長即為折疊進(jìn)去的寬度.
(1)若有一數(shù)學(xué)課本長為26cm、寬為18.5cm、厚為1cm,小海寶用一張面積為1260 cm2的矩形紙包好了這本數(shù)學(xué)書,封皮展開后如圖(4)所示.若設(shè)正方形的邊長(即折疊的寬度)為x cm,則包書紙長為                 cm,寬為             cm(用含x的代數(shù)式表示).
(2)請幫小海寶列好方程,求出第(1)題中小正方形的邊長x cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點E為BC邊的中點,點B′與點B關(guān)于AE對稱,B′B與AE交于點F,連接AB′,DB′,F(xiàn)C.下列結(jié)論:①AB′=AD;②△FCB′為等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.正確的個數(shù)是

A.4      B.3      C.2      D.1

查看答案和解析>>

同步練習(xí)冊答案