【題目】閱讀下面材料:
觀察與思考:閱讀下列材料,并解決后面的問題.在銳角中,、、的對邊分別是a、b、c,過A作于D(如圖),則,,即,,于是,即.同理有:,,所以.
即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.
(1)如圖,中,,,,則;
(2)如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.
(3)在(2)的條件下,試求75°的正弦值.(結(jié)果保留根號)
【答案】(1)20;(2)15海里;(3).
【解析】
(1)根據(jù)材料:在一個三角形中,各邊和它所對角的正弦的比相等,寫出比例關(guān)系,代入數(shù)值即可求得AB的值.
(2)此題可先由速度和時間求出BC的距離,再由各方向角得出∠A的角度,過B作BM⊥AC于M,求出∠MBC=30°,求出MC,由勾股定理求出BM,求出AM、BM的長,由勾股定理求出AB即可;
(3)在三角形ABC中,∠A=45,∠ABC=75,∠ACB=60,過點C作AC的垂線BD,構(gòu)造直角三角形ABD,BCD,在直角三角形ABD中可求出AD的長,進(jìn)而可求出sin75°的值.
解:(1)在△ABC中,∠B=75°,∠C=45°,BC=60,則∠A=60°,
∵ =,
∴ =,
即 =,
解得:AB=20.
(2)如圖,
依題意:BC=60×0.5=30(海里)
∵CD∥BE,
∴∠DCB+∠CBE=180°
∵∠DCB=30°,
∴∠CBE=150°
∵∠ABE=75°.
∴∠ABC=75°,
∴∠A=45°,
在△ABC中,= 即= ,
解之得:AB=15.
答:貨輪距燈塔的距離AB=15海里.
(3)過點B作AC的垂線BM,垂足為M.
在直角三角形ABM中,∠A=45°,AB=15,
所以AM=15,在直角三角形BDC中,∠BCM=60°,BC=30°,可求得CM=15,
所以AC=15+15,
由題意得, =,sin75°= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在去年的體育中考中,某校6名學(xué)生的體育成績統(tǒng)計如下表:
成績 | 17 | 18 | 20 |
人數(shù) | 2 | 3 | 1 |
則下列關(guān)于這組數(shù)據(jù)的說法錯誤的是( 。
A.眾數(shù)是18B.中位數(shù)是18C.平均數(shù)是18D.方差是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個函數(shù)y1和y2,若對于每個使函數(shù)有意義的實數(shù)x,函數(shù)y的值為兩個函數(shù)值中較小的數(shù),則稱函數(shù)y為這兩個函數(shù)y1、y2的較小值函數(shù).例如:y1=x+1,y2=﹣2x+4,則y1,y2的較小值函數(shù)為y=.
(1)函數(shù)y是函數(shù)y1=,y2=x的較小值函數(shù).
①在如圖的平面直角坐標(biāo)系中畫出函數(shù)y的圖象.
②寫出函數(shù)y的兩條性質(zhì).
(2)函數(shù)y是函數(shù)y1=x2﹣2x+1,y2=x+1的取較小值函數(shù).a≤x≤時,函數(shù)值y的取值范圍為0≤y≤b.當(dāng)a取某個范圍內(nèi)的任意值時,b為定值.直接寫出滿足條件的a的取值范圍及其對應(yīng)的b的值.
(3)函數(shù)y是函數(shù)y1=x2﹣2mx,y2=mx(m為常數(shù),且m≠0)的較小值函數(shù).當(dāng)m﹣2≤x≤1時,隨著x的增大,函數(shù)y先增大后減小,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】y=x2+(1﹣a)x+1是關(guān)于x的二次函數(shù),當(dāng)x的取值范圍是1≤x≤3時,y在x=1時取得最大值,則實數(shù)a的取值范圍是( 。
A. a≤﹣5B. a≥5C. a=3D. a≥3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點.
(1)求反比例函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAP與△ABQ均為等腰直角三角形,點P、Q在函數(shù)y=(x>0)的圖象上,直角頂點A、B均在x軸上,則點B的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標(biāo)為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當(dāng)以點A、N、C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標(biāo);
(4)如圖2,若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求此時點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求該拋物線的表達(dá)式;
(2)已知點E(4, y)是該拋物線上的點,點E關(guān)于拋物線的對稱軸對稱的點為點F,求點E和點F的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com