【題目】如圖,在長方形中,,線段上有動點,過作直線交邊于點,并使得.
當與重合時,求的長;
在直線上是否存在一點,使得是等腰直角三角形?若存在,求出的長;若不存在,請說明理由.
【答案】;或或時,是等腰直角三角形.
【解析】
(1)根據(jù)N與A重合時,BN=AB,然后代入數(shù)據(jù)進行計算即可得解;
(2)分①∠PNM=90°時,求出△APN和△BNM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=BM,AP=BN,然后根據(jù)AB=3列出方程計算即可得解;②∠PMN=90°時,過點P作PE⊥BC于E,求出△PME和△MNB全等,根據(jù)全等三角形對應(yīng)邊相等可得PE=BM,BN=ME,再根據(jù)BE=BM+ME列式計算即可得解;③∠MPN=90°時,過點M作MF⊥AD于F,求出△APN和△FMP全等,根據(jù)全等三角形對應(yīng)邊相等可得AP=MF.
與重合時,,
∴;①時,如圖,易得,
在和中,,
∴≌,
∴,,
∵,
∴,
解得,
∴;
②時,如圖,過點作于,
易得,
在和中,,
∴≌,
∴,,
∴;
③時,如圖,過點作于,
易得,
在和中,,
∴≌,
∴,
綜上所述,或或時,是等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績,測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.
運動員甲測試成績表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)小明將三人的成績整理后制作了下面的表格:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲 | 7 | b | 7 | 0.8 |
乙 | 7 | 7 | d | 0.4 |
丙 | a | c | e | 0.81 |
則表中a= ,b= ,c= ,d= ,e= .
(2)若在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?請作出簡要分析.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,解一元一次方程,可以把它轉(zhuǎn)化為兩個一元一次方程來解,其實用“轉(zhuǎn)化”的數(shù)學思想,我們還可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)用“轉(zhuǎn)化”思想求方程=x的解.
(3)如圖,已知矩形草坪ABCD的長AD=14m,寬AB=12m,小華把一根長為28m的繩子的一端固定在點B處,沿草坪邊沿BA、AD走到點P處,把長繩PB段拉直并固定在點P處,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C處,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一款名為超級瑪麗的游戲中,瑪麗到達一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點的高度MN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC邊長是定值,點O是它的外心,過點O任意作一條直線分別交AB,BC于點D,E.將△BDE沿直線DE折疊,得到△B′DE,若B′D,B′E分別交AC于點F,G,連接OF,OG,則下列判斷錯誤的是( 。
A. △ADF≌△CGE
B. △B′FG的周長是一個定值
C. 四邊形FOEC的面積是一個定值
D. 四邊形OGB'F的面積是一個定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com