(2007•赤峰)“方程”是現(xiàn)實生活中十分重要的數(shù)學模型.請結(jié)合你的生活實際編寫一道二元一次方程組的應用題,并使所列出的二元一次方程組為,并寫出求解過程.
【答案】分析:根據(jù)題意可知,有該應用題要求的是兩個量,且兩個未知量的關系式,一個未知量是另一個的2倍,兩個未知量的總和是60.以這兩個等量關系,編寫二元一次方程組的應用題.
解答:解:應用題:我家里有60棵樹,其中楊樹是柳樹的2倍,求楊樹和柳樹各有多少棵?
解答過程:設楊樹x棵,柳樹y.
棵依題意:
解得:
答:我家有楊樹40棵,柳樹20棵.
點評:要注意未知量之間的關系,根據(jù)關系編寫應用題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年3月中考數(shù)學第一次模擬考試卷(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江西省南昌市新民外國語學校數(shù)學中考模擬試卷(一)(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市從化市中考數(shù)學一模試卷(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年安徽省安慶市桐城市白馬中學中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年內(nèi)蒙古赤峰市中考數(shù)學試卷(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

同步練習冊答案