【題目】如圖,已知拋物線經(jīng)過A(3,0),B(0,3)兩點.

(1)求此拋物線的解析式和直線AB的解析式;

(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當(dāng)E,F(xiàn)中任意一點到達終點時另一點也隨之停止運動,連接EF,設(shè)運動時間為t秒,當(dāng)t為何值時,△AEF為直角三角形?

(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構(gòu)成無數(shù)個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標(biāo);如果不存在,請簡要說明理由.

【答案】(1)y=﹣x+3;(2);(3)存在面積最大,最大是,此時點P().

【解析】

試題分析:(1)用待定系數(shù)法求出拋物線,直線解析式;

(2)分兩種情況進行計算即可;

(3)確定出面積達到最大時,直線PC和拋物線相交于唯一點,從而確定出直線PC解析式,根據(jù)銳角三角函數(shù)求出BD,計算即可.

試題解析:(1)∵拋物線經(jīng)過A(3,0),B(0,3)兩點,∴,∴,∴,設(shè)直線AB的解析式為y=kx+n,∴,∴,∴y=﹣x+3;

(2)由運動得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF為直角三角形,∴①△AOB∽△AEF,∴,,∴t=,②△AOB∽△AFE,∴,∴,∴t=;

(3)如圖,存在,過點P作PC∥AB交y軸于C,∵直線AB解析式為y=﹣x+3,∴設(shè)直線PC解析式為y=﹣x+b,聯(lián)立,∴,∴∴△=9﹣4(b﹣3)=0,b=,∴BC=﹣3=,x=,∴ P().

過點B作BD⊥PC,∴直線BD解析式為y=x+3,∴BD=,∴BD=,∵AB=,S最大=AB×BD==

即:存在面積最大,最大是,此時點P().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017的絕對值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A01),B3,2),C1,4)均在正方形網(wǎng)格的格點上.

1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;

2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點A2B2,C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形的對角線一定(  )

A. 互相垂直平分且相等B. 互相平分且相等

C. 互相垂直且相等D. 互相垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2x+1)(2x-1)等于(

A. 4x2-1 B. 2x2-1 C. x2-1 D. 2x2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A與∠C的度數(shù)比是5:7,且∠B比∠A大10°,那么∠B為(  )
A.40°
B.50°
C.60°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一圖形繞著點O順時針方向旋轉(zhuǎn)70°后,再繞著點O逆時針方向旋轉(zhuǎn)120°,這時如果要使圖形回到原來的位置,需要將圖形繞著點O什么方向旋轉(zhuǎn)多少度( )

A. 順時針方向50° B. 逆時針方向50° C. 順時針方向190° D. 逆時針方向190°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形具有穩(wěn)定性的是(  )
A.六邊形
B.五邊形
C.平行四邊形
D.等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某個幾何體的主視圖、左視圖、俯視圖分別為長方形、長方形、圓,則該幾何體是

查看答案和解析>>

同步練習(xí)冊答案