【題目】如圖,AB⊙O的直徑,AB=AC,BC⊙O于點(diǎn)D,AC⊙O于點(diǎn)E,∠BAC=45°,給出以下五個(gè)結(jié)論:①∠EBC=22.5°;②BD=DC;③AE=2EC;劣弧是劣弧2倍;⑤AE=BC,其中正確的序號是_________

【答案】①②④

【解析】

連接AD,AB是直徑,則AD⊥BC,又∵△ABC是等腰三角形,故點(diǎn)DBC的中點(diǎn),即BD=CD,故正確;

∵AD∠BAC的平分線,由圓周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故正確;

∵∠ABE=90°∠EBC∠BAD=45°=2∠CAD,故正確;

∵∠EBC=22.5°2EC≠BE,AE=BE,∴AE≠2CE,不正確;

∵AE=BE,BE是直角邊,BC是斜邊,肯定不等,故錯(cuò)誤.

綜上所述,正確的結(jié)論是:①②④

故答案為①②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想:

RtABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,連接AD,把ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)D落在點(diǎn)E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是   ,位置關(guān)系是   

(2)探究證明:

在(1)的條件下,若點(diǎn)D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請?jiān)趫D②中畫出圖形,并證明你的判斷.

(3)拓展延伸:

如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°AC=,其他條件不變,過點(diǎn)DDFADCE于點(diǎn)F,請直接寫出線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對稱軸為直線x=1的拋物線y=ax2+bx+8過點(diǎn)(﹣2,0).

(1)求拋物線的表達(dá)式,并寫出其頂點(diǎn)坐標(biāo);

(2)現(xiàn)將此拋物線沿y軸方向平移若干個(gè)單位,所得拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為B,與x軸負(fù)半軸交于點(diǎn)A,過Bx軸的平行線交所得拋物線于點(diǎn)C,若AC∥BD,試求平移后所得拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線與軸相交于點(diǎn),點(diǎn),與軸相交于點(diǎn),與拋物線的對稱軸相交于點(diǎn).

1)求該拋物線的表達(dá)式,并直接寫出點(diǎn)的坐標(biāo);

2)過點(diǎn)交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);

3)在(2)的條件下,點(diǎn)在射線上,若相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,CD切⊙O于點(diǎn)C,AECD于點(diǎn)E

(1)求證:AC平分∠DAE;

(2)若AB=6,BD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線yax2+bx+c的對稱軸是x=﹣1,與x軸的一個(gè)交點(diǎn)為(﹣5,0),則不等式ax2+bx+c0的解集為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平而直角坐標(biāo)系中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn).正方形ABCD的項(xiàng)點(diǎn)CD在第一象限,頂點(diǎn)D在反比例函數(shù)yk≠0)的圖象上.若正方形ABCD向左平移n個(gè)單位后,頂點(diǎn)C恰好落在反比例函數(shù)的圖象上,則n的值是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;

(2)在x軸下方的拋物線上是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點(diǎn)從點(diǎn)出發(fā)向點(diǎn)移動,速度為每秒1個(gè)單位長度,點(diǎn)從點(diǎn)出發(fā)向點(diǎn)移動,速度為每秒2個(gè)單位長度. 兩點(diǎn)同時(shí)出發(fā),且其中的任何一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)的移動同時(shí)停止.

1)若兩點(diǎn)的運(yùn)動時(shí)間為,當(dāng)為何值時(shí),?

2)在(1)的情況下,猜想的位置關(guān)系并證明你的結(jié)論.

3)①如圖2,當(dāng)時(shí),其他條件不變,若(2)中的結(jié)論仍成立,則_________.

②當(dāng),時(shí),其他條件不變,若(2)中的結(jié)論仍成立,則_________(用含的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案