【題目】已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當直線DF與⊙O相切時,求⊙O的半徑.
【答案】(1)證明見解析(2)
【解析】試題分析:(1)連接欲證直線是的切線,只需證明.利用等邊三角形的三個內(nèi)角都是60°、等腰以及三角形的內(nèi)角和定理求得同位角 從而判定,所以由已知條件判定即直線是的切線;
(2)連接設(shè)的半徑是.由等邊三角形的三個內(nèi)角都是60°、三條邊都相等、以及在直角三角形中30°所對的直角邊是斜邊的一半求得關(guān)于的方程,解方程即可.
試題解析:(1)證明:連接
是等邊三角形,
在中,
(同位角相等,兩直線平行);
即直線是的切線;
(2)連接
與相切,
設(shè)的半徑是,則
在中,
在中,
解得,
的半徑是
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△OBC的頂點分別為O(0,0),B(3,﹣1)、C(2,1).
(1)以點O(0,0)為位似中心,按比例尺2:1在位似中心的異側(cè)將△OBC放大為△OB′C′,放大后點B、C兩點的對應(yīng)點分別為B′、C′,畫出△OB′C′,并寫出點B′、C′的坐標:B′( , ),C′( , );
(2)在(1)中,若點M(x,y)為線段BC上任一點,寫出變化后點M的對應(yīng)點M′的坐標( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設(shè)DE與BC相交于點F,求BF的長;
(2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙、丙、丁4名同學(xué)中隨機抽取同學(xué)參加學(xué)校的座談會
(1)抽取一名同學(xué), 恰好是甲的概率為
(2) 抽取兩名同學(xué),求甲在其中的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x 2 +2mx-m 2+4
(1)當m=1時,拋物線的對稱軸和頂點坐標:
(2)求證:不論m取何值時該二次函數(shù)的圖像與x軸必有兩個不同交點
(3)若該二次函數(shù)的圖像與x軸交于點A, B(點A在點B的左側(cè)),頂點為C,則這時△ABC的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,為外角的平分線,.
(1)求證:四邊形為矩形;
(2)當與滿足什么數(shù)量關(guān)系時,四邊形是正方形?并給予證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com