【題目】【探究證明】某班數(shù)學課題學習小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進行探究,提出下列問題,請你給出證明.
(1)某班數(shù)學課題學習小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進行探究,提出下列問題,請你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F(xiàn),GH分別交AD,BC于點G,H.求證: = ;

(2)【結(jié)論應(yīng)用】如圖2,在滿足(1)的條件下,又AM⊥BN,點M,N分別在邊BC,CD上,若 = ,則 的值為;

(3)【聯(lián)系拓展】如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點M,N分別在邊BC,AB上,求 的值.

【答案】
(1)解:過點A作AP∥EF,交CD于P,過點B作BQ∥GH,交AD于Q,如圖1,

∵四邊形ABCD是矩形,∴AB∥DC,AD∥BC.

∴四邊形AEFP、四邊形BHGQ都是平行四邊形,

∴AP=EF,GH=BQ.

又∵GH⊥EF,∴AP⊥BQ,

∴∠QAT+∠AQT=90°.

∵四邊形ABCD是矩形,∴∠DAB=∠D=90°,

∴∠DAP+∠DPA=90°,

∴∠AQT=∠DPA.

∴△PDA∽△QAB,

= ,

= ;


(2)
(3)解:過點D作平行于AB的直線,交過點A平行于BC的直線于R,交BC的延長線于S,如圖3,

則四邊形ABSR是平行四邊形.

∵∠ABC=90°,∴ABSR是矩形,

∴∠R=∠S=90°,RS=AB=10,AR=BS.

∵AM⊥DN,

∴由(1)中的結(jié)論可得 =

設(shè)SC=x,DS=y,則AR=BS=5+x,RD=10﹣y,

∴在Rt△CSD中,x2+y2=25①,

在Rt△ARD中,(5+x)2+(10﹣y)2=100②,

由②﹣①得x=2y﹣5③,

解方程組 ,得

(舍去),或

∴AR=5+x=8,

= = =


【解析】(2)解:如圖2,

∵EF⊥GH,AM⊥BN,

∴由(1)中的結(jié)論可得 = = ,

= =

所以答案是 ;

【考點精析】本題主要考查了勾股定理的概念和平行四邊形的判定與性質(zhì)的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當a=1時,函數(shù)圖象過點(﹣1,1)
B.當a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當x≥1時,y隨x的增大而減小
D.若a<0,則當x≤1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB

1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;

2)若D、E、F分別是AB、AC、CD邊上的中點,SDEF4,SABC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費情況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表.

組別

家庭年文化教育消費金額x(元)

戶數(shù)

A

x5000

36

B

5000x10000

27

C

10000x15000

m

D

15000x20000

33

E

x20000

30

請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

1)本次被調(diào)查的家庭有   戶,表中m   

2)請說明本次調(diào)查數(shù)據(jù)的中位數(shù)落在哪一組?

3)在扇形統(tǒng)計圖中,D組所在扇形的圓心角為多少度?

4)這個社區(qū)有2500戶家庭,請你估計年文化教育消費在10000元以上的家庭有多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點 A 、B分別在反比例函數(shù) 的圖象上,且OA ⊥OB ,則 的值為( )

A.
B.2
C.
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5/噸收費,超出10噸的部分按2/噸收費,則某戶居民一個月用水8噸,則應(yīng)繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應(yīng)繳水費:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量(噸)

6

7

12

15

水費(元)

12

14

28

37

(1)該市規(guī)定用水量為   噸,規(guī)定用量內(nèi)的收費標準是   /噸,超過部分的收費標準是   /噸.

(2)若小明家五月份用水20噸,則應(yīng)繳水費   元.

(3)若小明家六月份應(yīng)繳水費46元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,矩形 ABCO,B點坐標為(4,3),拋物線y=
經(jīng)過矩形ABCO的頂點 B 、C ,D為BC的中點,直線 AD y軸交 E點,與拋物線 交于第四象限的 F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖2,動點P從點C出發(fā),沿線段 CB以每秒1個單位長度的速度向終點B運動;同時,動點M從 A出發(fā),沿線 AE以每秒 個單位長度的速度向終點E運動.過點P作PH ⊥OA,垂足為H ,連接 MP ,MH .設(shè)點 P 的運動時間 t秒.
①問EP+ PH+ HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過坐標原點,并與x軸交于點A(2,0).

(1)求此拋物線的解析式;
(2)寫出頂點坐標及對稱軸;
(3)若拋物線上有一點B,且SOAB=3,求點B的坐標.

查看答案和解析>>

同步練習冊答案