【題目】牛奶是最古老的天然飲料之一,被譽為“白色血液”,對人體的重要性可想而知,現(xiàn)已成為國家營養(yǎng)餐計劃備選食品之一.為推行國家營養(yǎng)餐計劃,某乳品公司向某營養(yǎng)餐中心運輸不少于的牛奶.由鐵路運輸每千克只需運費0.58元;由公路運輸,每千克需運費0.28元,還需其他費用600元.請?zhí)骄坎⒄f明選用哪種運輸方式所需費用較少?
【答案】當(dāng)運輸牛奶質(zhì)量大于時,選用公路運輸所需費用較少;當(dāng)運輸牛奶質(zhì)量等于時,選用兩種運輸所需費用相同;當(dāng)運輸牛奶質(zhì)量大于而小于時,選用鐵路運輸所需費用較少.
【解析】
設(shè)該公司運輸?shù)倪@批牛奶為,選擇鐵路運輸時,所需運費為元,選擇公路運輸時,所需運費為元,則:,.分3種情況分析即可.
解:設(shè)該公司運輸?shù)倪@批牛奶為,選擇鐵路運輸時,所需運費為元,選擇公路運輸時,所需運費為元,則:
,
.
當(dāng)時,,解得;
當(dāng)時,,解得;
當(dāng)時,,解得.
答:當(dāng)運輸牛奶質(zhì)量大于時,選用公路運輸所需費用較少;當(dāng)運輸牛奶質(zhì)量等于時,選用兩種運輸所需費用相同;當(dāng)運輸牛奶質(zhì)量大于而小于時,選用鐵路運輸所需費用較少.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠1=∠2,CF⊥AB,DE⊥AB,垂足分別為點F、E,求證:FG∥BC.
證明:∵CF⊥AB、DE⊥AB(已知)
∴∠BED=90°、∠BFC=90°
∴∠BED=∠BFC
∴( )∥( )( )
∴∠1=∠BCF( )
又∵∠1=∠2(已知)
∴∠2=∠BCF( )
∴FG∥BC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,于點
(1)如圖1,若的角平分線交于點,,,求的度數(shù);
(2)如圖2,點分別在線段上,將折疊,點落在點處,點落在點處,折痕分別為和,且點,點均在直線上,若,試猜想與之間的數(shù)量關(guān)系,并加以證明;
(3)在(2)小題的條件下,將繞點逆時針旋轉(zhuǎn)一個角度(),記旋轉(zhuǎn)中的為(如圖3),在旋轉(zhuǎn)過程中,直線與直線交于點,直線與直線交于點,若,是否存在這樣的兩點,使為直角三角形?若存在,請直接寫出旋轉(zhuǎn)角的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補全證明過程
已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(___________________),
∴∠2=∠_________(等量代換)。
∴DB∥EC(同位角相等,兩直線平行)。
∴∠A=∠F(兩直線平行,內(nèi)錯角相等)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 O 是等邊△ABC 內(nèi)一點,∠AOB=105°,∠BOC 等于α,將△BOC 繞點 C 按 順時針方向旋轉(zhuǎn) 60°得△ADC,連接 OD.
(1)求證:△COD 是等邊三角形.
(2)求∠OAD 的度數(shù).
(3)探究:當(dāng)α為多少度時,△AOD 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
當(dāng)n個最小的連續(xù)偶數(shù)(從2開始)相加時,它們的和與n之間有什么樣的關(guān)系,請用公式表示出來,并由此計算:
①2+4+6+…+200的值;
②(-22)+(-24)+(-26)+…+(-300)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開通了,中國聯(lián)通公布了資費標(biāo)準(zhǔn),其中包月元時,超出部分國內(nèi)撥打元/分.由于業(yè)務(wù)多,小明的爸爸打電話已超出了包月費.下表是超出部分國內(nèi)撥打的收費標(biāo)準(zhǔn).
時間/分 | 1 | 2 | 3 | 4 | 5 | … |
電話費/元 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | … |
(1)這個表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?
(2)如果用表示超出時間,表示超出部分的電話費,那么與的關(guān)系式是什么?
(3)如果打電話超出分鐘,需多付多少電話費?
(4)某次打電話的費用超出部分是元,那么小明的爸爸打電話超出幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為CD上一點,將△BCE沿BE翻折后點C恰好落在AD邊上的點F處,過F作FH⊥BC于H,交BE于G,連接CG.
(1)求證:四邊形CEFG是菱形;
(2)若AB=8,BC=10,求四邊形CEFG的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com