【題目】如圖,在平面直角坐標系中,拋物線過點,與軸交于點,連接沿所在的直線翻折,得到連接

1)若求拋物線的解析式.

2)如圖1,設(shè)的面積為的面積為,若,求的值.

3)如圖2,點是半徑為上一動點,連接當點運動到某一位置時,的值最大,請求出這個最大值,并說明理由.

【答案】1;(2;(3.理由見解析.

【解析】

1)根據(jù)可得C的坐標為(0,1),根據(jù)待定系數(shù)法,將點,C(0,1)代入中,解方程組即可得到a、b、c的值,即可得解;

2)設(shè),,,由勾股定理,等積法及銳角三角函數(shù)的定義分別求得,,從而得到,代入到,得到關(guān)于a的方程求解即可;

3)在軸上取點,連接,構(gòu)造出一對相似三角形,相似比,轉(zhuǎn)化成線段,從而得到,結(jié)合圖形,運用三角形的三邊關(guān)系,即可得到當點在同一直線上時,最大,利用勾股定理即可得到CD的值.

1)∵OB=3,

OC=1,得C的坐標為(0,1),

將點C(0,1)代入中,

得到 解得: ,

故函數(shù)的解析式為:;

設(shè),

,

,

,

設(shè)于點,由軸對稱性,,

中,,

由面積法:

,

,

,

,

,

;

軸上取點,連接

中,∵PC-PD<CD,

當點在同一直線上時,最大,

,

最大值為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:

分別以點C和點D為圓心,大于的同樣的長為半徑作弧,兩弧交于M,N兩點;

作直線MN,交CD于點E,連接BE

若直線MN恰好經(jīng)過點A,則下列說法錯誤的是(  )

A.ABC60°

B.

C.AB4,則BE

D.tanCBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學實踐小組想利用鏡子的反射測量池塘邊一棵樹的高度AB.測量和計算的部分步驟如下:

①如圖,樹與地面垂直,在地面上的點C處放置一塊鏡子,小明站在BC的延長線上,當小明在鏡子中剛好看到樹的頂點A時,測得小明到鏡子的距離CD2米,小明的眼睛E到地面的距離ED1.5米;

②將鏡子從點C沿BC的延長線向后移動10米到點F處,小明向后移動到點H處時,小明的眼睛G又剛好在鏡子中看到樹的頂點A,這時測得小明到鏡子的距離FH3米;

③計算樹的高度AB;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,的直徑,為圓周上兩點,且,過點,交的延長線于點

1)求證:切線;

2)填空:①當四邊形為菱形,則的度數(shù)為________;

②當時,四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象過點,對稱軸為直線,下列結(jié)論中一定正確的是____________(填序號即可)

②若是拋物線上的兩點,當時,

③若方程的兩根為,且,則

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)購買甲、乙兩種樹苗進行綠化,購買一棵甲種樹苗的價錢比購買一棵乙種樹苗的價錢多 10 元錢,已知購買 20 棵甲種樹苗、30 棵乙種樹苗共需 1 200 元錢.

1)求購買一棵甲種、一棵乙種樹苗各多少元?

2)社區(qū)決定購買甲、乙兩種樹苗共 400 棵,總費用不超過 10 600 元,那么該社區(qū)最多可以購買多少棵甲種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中, 是平面內(nèi)不與點重合的任意一點, 連接,將線段繞點逆時針旋轉(zhuǎn)得到線段,連接

1)動手操作

如圖1,當時,我們通過用 刻度尺和量角器度量發(fā)現(xiàn):

的值是;直線與直線相交所成的較小角的度數(shù)是;

請證明以上結(jié)論正確.

2)類比探究

如圖2,當時,請寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐 中,,點為斜邊上的動點(不與點重合)

1)操作發(fā)現(xiàn): 如圖①,當時,把線段繞點逆時針旋轉(zhuǎn)得到線段,連接

的度數(shù)為________;

②當________時,四邊形為正方形;

2)探究證明: 如圖②,當時,把線段繞點逆時針旋轉(zhuǎn)后并延長為原來的兩倍, 記為線段,連接

①在點的運動過程中,請判斷的大小關(guān)系,并證明;

②當時,求證:四邊形為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點B落在點E處,AEDC的交點為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

同步練習冊答案