【題目】已知a、b、c滿足|a﹣|+ +(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請(qǐng)說(shuō)明理由.

【答案】(1a=,b=5,c=4;(2)此三角形是直角三角形,

【解析】試題分析:(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到方程,解方程即可得到結(jié)果;

2)根據(jù)三角形的三邊關(guān)系,勾股定理的逆定理判斷即可.

解:(1∵ab、c滿足|a﹣|++c﹣42=0

∴|a﹣|=0,=0,(c﹣42=0

解得:a=,b=5c=4;

2∵a=,b=5,c=4,

∴a+b=+54

a、b、c為邊能構(gòu)成三角形,

∵a2+b2=2+52=32=42=c2

此三角形是直角三角形,

∴S==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:

12m24mn+2n2

2ax1+bx1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)n邊形的內(nèi)角和是其外角和的2倍,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)請(qǐng)直接寫出點(diǎn)B關(guān)于點(diǎn)A對(duì)稱的點(diǎn)的坐標(biāo);

(2)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);

(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列四組數(shù)中,不是勾股數(shù)的一組數(shù)是( )
A.a=15,b=8,c=17
B.a=9,b=12,c=15
C.a=7,b=24,c=25
D.a=3,b=5,c=7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在有理數(shù)中,絕對(duì)值等于它本身的數(shù)有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 無(wú)窮多個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓心在坐標(biāo)原點(diǎn)的⊙O的半徑為1,若拋物線y=﹣x2+c⊙O剛好有三個(gè)公共點(diǎn),則此時(shí)c= .若拋物線和⊙O只有兩個(gè)公共點(diǎn),則c可以取的一切值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)不透明的布袋,甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1,2,;乙袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2,0;現(xiàn)從甲袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為x,再?gòu)囊掖须S機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M坐標(biāo)為(x,y).

1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);

2)求點(diǎn)Mx,y)在函數(shù)y=﹣x+1的圖象上的概率;

3)在平面直角坐標(biāo)系xOy中,O的半徑是2,求過點(diǎn)Mxy)能作O的切線的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的函數(shù)關(guān)系式:y=x2+2a﹣1x+a2﹣2a(其中x是自變量),

1)若點(diǎn)P2,3)在此拋物線上,

a的值;

a0,且一次函數(shù)y=kx+b的圖象與此拋物線沒有交點(diǎn),請(qǐng)你寫出一個(gè)符合條件的一次函數(shù)關(guān)系式(只需寫一個(gè),不要寫過程);

2)設(shè)此拋物線與軸交于點(diǎn)Ax10)、Bx2,0).若x1x2,且拋物線的頂點(diǎn)在直線x=的右側(cè),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案