【題目】綜合與實(shí)踐四邊形旋轉(zhuǎn)中的數(shù)學(xué)
“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動(dòng)中研究了一個(gè)問題,請(qǐng)幫他們解答.
任務(wù)一:如圖1,在矩形ABCD中,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為矩形,連接CG.
請(qǐng)直接寫出CG的長(zhǎng)是______.
如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn)至點(diǎn)G落在邊AB上時(shí),請(qǐng)計(jì)算DF與CG的長(zhǎng),通過計(jì)算,試猜想DF與CG之間的數(shù)量關(guān)系.
當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時(shí),中DF與CG之間的數(shù)量關(guān)系是否還成立?請(qǐng)說明理由.
任務(wù)二:“智慧”數(shù)學(xué)小組對(duì)圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著特定的數(shù)量關(guān)系.
如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn),其他條件不變時(shí),“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著這一特定的數(shù)量關(guān)系請(qǐng)你直接寫出這個(gè)特定的數(shù)量關(guān)系.
【答案】(1)5;(2).(3)成立,詳見解析.(4).
【解析】
延長(zhǎng)EG交CD于H,則四邊形FGHD是矩形在中,利用勾股定理即可解決問題;
作于利用勾股定理相似三角形的性質(zhì),分別求出CG、DF即可解決問題;
連接AG、只要證明∽,可得即可解決問題;
通過計(jì)算即可解決問題.
如圖1中,延長(zhǎng)EG交CD于H,則四邊形FGHD是矩形.
在中,,,
.
故答案為5.
如圖2中,作于P.
在矩形AEGF中,,,
,,
在中,,
由∽,可得,
,
,,,
在中,,
.
成立理由如下:連接AG、AC.
由旋轉(zhuǎn)可知:,
由勾股定理可知:,,
,,
,
∽,
,
.
如圖4中,延長(zhǎng)EG交CD于H,作于K.
由題意可知四邊形FGHD是平行四邊形,四邊形AEGF是平行四邊形,
,,,,
在中,,,,
在中,,
.
在圖5中,連接AG、同法可證:∽,可得:,可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點(diǎn)F,C是⊙O上兩點(diǎn),連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于點(diǎn)D,垂足為點(diǎn)D.
(1)求扇形OBC的面積(結(jié)果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
(1)寫出表格中a,b,c的值:a= ,b= ,c= .
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的方差 .(填“變大”“變小”“不變”)
(3)教練根據(jù)這10次成績(jī)?nèi)暨x擇甲參加比賽,教練的理由是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某中學(xué)利用“陽(yáng)光大課間”,組織學(xué)生積極參加豐富多彩的課外活動(dòng),學(xué)校成立了舞蹈隊(duì)、足球隊(duì)、籃球隊(duì)、毽子隊(duì)、射擊隊(duì)等,其中射擊隊(duì)在某次訓(xùn)練中,甲、乙兩名隊(duì)員各射擊10發(fā)子彈,成績(jī)記錄如表:
射擊次序(次) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的成績(jī)(環(huán)) | 8 | 9 | 7 | 9 | 8 | 6 | 7 | a | 10 | 8 |
乙的成績(jī)(環(huán)) | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
(1)經(jīng)計(jì)算甲和乙的平均成績(jī)是8(環(huán)),請(qǐng)求出表中的a= ;
(2)甲成績(jī)的中位數(shù)是 環(huán),乙成績(jī)的眾數(shù)是 環(huán);
(3)若甲成績(jī)的方差是1.2,請(qǐng)求出乙成績(jī)的方差,判斷甲、乙兩人誰(shuí)的成績(jī)更為穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸相交于,兩點(diǎn),與軸交于點(diǎn),為頂點(diǎn).
求直線的解析式和頂點(diǎn)的坐標(biāo);
已知,點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn),作于點(diǎn),當(dāng)最大時(shí),有一條長(zhǎng)為的線段(點(diǎn)在點(diǎn)的左側(cè))在直線上移動(dòng),首尾順次連接、、、構(gòu)成四邊形,請(qǐng)求出四邊形的周長(zhǎng)最小時(shí)點(diǎn)的坐標(biāo);
如圖,過點(diǎn)作軸交直線于點(diǎn),連接,點(diǎn)是線段上一動(dòng)點(diǎn),將沿直線折疊至,是否存在點(diǎn)使得與重疊部分的圖形是直角三角形?若存在,請(qǐng)求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中日釣魚島爭(zhēng)端持續(xù),我國(guó)海監(jiān)船加大釣魚島海域的巡航維權(quán)力度.如圖,,海里,海里,釣魚島位于點(diǎn),我國(guó)海監(jiān)船在點(diǎn)處發(fā)現(xiàn)有一不明國(guó)籍的漁船自點(diǎn)出發(fā)沿著方向勻速駛向釣魚島所在地點(diǎn),我國(guó)海監(jiān)船立即從處出發(fā)以相同的速度沿某直線去攔截這艘漁船,結(jié)果在點(diǎn)處截住了漁船.
(1)請(qǐng)用直尺和圓規(guī)作出處的位置.(不寫作法,保留作圖痕跡)
(2)求我國(guó)海監(jiān)船行駛的航程的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)在圖中確定該圓弧所在圓的圓心D點(diǎn)的位置,并寫出點(diǎn)D點(diǎn)坐標(biāo)為________.
(2)連接AD、CD,求⊙D的半徑及的長(zhǎng);
(3)有一點(diǎn)E(6,0),判斷點(diǎn)E與⊙D的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與雙曲線交于、兩點(diǎn),且點(diǎn)的橫坐標(biāo)為4.
(1)若雙曲線上一點(diǎn)的縱坐標(biāo)為8,求的面積;
(2)過原點(diǎn)的另一條直線交雙曲線于,兩點(diǎn)(點(diǎn)在第一象限),若由點(diǎn),,,為頂點(diǎn)組成的四邊形面積為24,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com