【題目】如圖,在直角坐標(biāo)系xOy中,點A,B分別在x軸和y軸上, = ,∠AOB的角平分線與OA的垂直平分線交于點C,與AB交于點D,反比例函數(shù)y= 的圖象過點C,若以CD為邊的正方形的面積等于 ,則k的值是.
【答案】7
【解析】解:設(shè)OA=3a,則OB=4a,
設(shè)直線AB的解析式是y=kx+b,
則根據(jù)題意得: ,
解得: ,
則直線AB的解析式是y=﹣ x+4a,
直線CD是∠AOB的平分線,則OD的解析式是y=x.
根據(jù)題意得: ,
解得:
則D的坐標(biāo)是( , ),
OA的中垂線的解析式是x= ,
則C的坐標(biāo)是( , ),
則k= × = .
∵以CD為邊的正方形的面積為 ,
∴2( ﹣ )2= ,
則a2= ,
∴k= × =7.
故答案為7.
根據(jù) = ,可設(shè)OA=3a,OB=4a,求出直線AB;由OD是∠AOB的平分線,則OD的解析式是y=x;聯(lián)立直線解析式求得點D的坐標(biāo),和求出點C的坐標(biāo),可得到CD的長,根據(jù)CD2= ,求出a的值,從而得到k的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲、乙兩種型號的機器生產(chǎn)同樣的產(chǎn)品,兩種型號的機器一共48臺,其中甲型號機器比乙型號機器多10臺.
(1)乙型號機器有 臺(請直接寫出答案);
(2)若已知4臺甲型號機器一天生產(chǎn)的產(chǎn)品裝滿6箱后還剩8個,5臺乙型號機器的產(chǎn)品還缺1個就可以裝滿8箱,每臺甲型號機器比每臺乙型號機器一天多生產(chǎn)1個產(chǎn)品,求每箱裝多少個產(chǎn)品?
(3)在前兩問的條件下,若某天有2臺甲型號機器和若干臺乙型號機器同時開工,問這天生產(chǎn)的產(chǎn)品能否恰好裝滿35箱,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是段AB的“2倍點”.
(1)線段的中點__________這條線段的“2倍點”;(填“是”或“不是”)
(2)若AB=15cm,點C是線段AB的“2倍點”.求AC的長;
(3)如圖②,已知AB=20cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動.點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動.點P、Q同時出發(fā),當(dāng)其中一點到達終點時,運動停止,設(shè)移動的時間為t(s),當(dāng)t=_____________s時,點Q恰好是線段AP的“2倍點”.(請直接寫出各案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的ABC中,按以下步驟作圖:
①分別以B,C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點M,N;
②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A.90°
B.95°
C.100°
D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點A表示的數(shù)為-1,正方形ABCD的面積為16.
(1)數(shù)軸上點B表示的數(shù)為 ;
(2)將正方形ABCD沿數(shù)軸水平移動,移動后的正方形記為,移動后的正方形與原正方形ABCD重疊部分的面積記為S.
① 當(dāng)S =4時,畫出圖形,并求出數(shù)軸上點表示的數(shù);
② 設(shè)正方形ABCD的移動速度為每秒2個單位長度,點E為線段的中點,點F在線段上,且. 經(jīng)過秒后,點E,F所表示的數(shù)互為相反數(shù),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是O的直徑,點C在O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是O的切線;
(2)求證:BC= AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了推動球類運動的普及,成立多個球類運動社團,為此,學(xué)生會采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球四個項目調(diào)查了若干名學(xué)生的興趣愛好(要求每位同學(xué)只能選擇其中一種自己喜歡的球類運動),并將調(diào)查結(jié)果繪制成了如下條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查,共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)若該學(xué)校共有學(xué)生1800人,根據(jù)以上數(shù)據(jù)分析,試估計選擇排球運動的同學(xué)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)表達式為y=﹣2x+2,且與x軸交于點A,直線l2經(jīng)過點B(5,0)且與l1交于點C,已知點C的橫坐標(biāo)是2.
(1)求點A和點C的坐標(biāo);
(2)若在直線l2上存在異于點C的另一點M,使得△ABM與△ABC的面積相等,試求點M的坐標(biāo).
(3)在y軸上求點P的坐標(biāo),使得PA+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班有學(xué)生55人,其中男生與女生的人數(shù)之比為6:5.
(1)求出該班男生與女生的人數(shù);
(2)學(xué)校要從該班選出20人參加學(xué)校的合唱團,要求:①男生人數(shù)不少于7人;②女生人數(shù)超過男生人數(shù)2人以上.請問男、女生人數(shù)有幾種選擇方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com