【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于D點,其中B(6,0),D(0,﹣6)

(1)求這個二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連結(jié)DADC,求△ADC的面積.

【答案】(1)y=﹣x2+4x6(2)6.

【解析】

(1)B點和D點坐標代入得到關(guān)于b、c的方程組,然后解方程組即可得到拋物線解析式;

(2)先解方程0A(2,0),再確定對稱軸得到C(4,0),然后根據(jù)三角形面積公式求解.

(1)B(6,0),D(0,﹣6)代入,

解得

所以拋物線解析式為;

(2)y0時,0,解得6,則A(20),

A點和B點關(guān)于對稱軸對稱,

∴拋物線的對稱軸為直線,

C(4,0)

∴△ADC的面積=×(42)×66.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(10),OC=3OB,


1)求拋物線的解析式;
2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
3)若點Ex軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,解一元二次方程,可以把它轉(zhuǎn)化為兩個一元一次方程來解,其實用“轉(zhuǎn)化”的數(shù)學(xué)思想我們還可以解一些新的方程例如一元三次方程x3+x22x0,可以通過因式分解把它轉(zhuǎn)化為xx2+x2)=0,通過解方程x0x2+x20,可得方程x3+x22x0的解.

1)方程x3+x22x0的解是x10,x2   x3   

2)用“轉(zhuǎn)化”的思想求方程x的解.

3)試直接寫出的解   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+ba0)的圖象與反比例函數(shù)k0)的圖象交于AB兩點,x軸交于點C,過點AAHx軸于點H,O是線段CH的中點,AC=,cosACH=,B的坐標為(4,n

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)求BCH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A(﹣1,0),B3,0)兩點,與y軸交于點C0,3.

1)求此拋物線所對應(yīng)函數(shù)的表達式;

2)若M 是拋物線對稱軸上一個動點,求當 MA+MC 的值最小時 M 點坐標;

3)若拋物線的頂點為D,在其對稱軸右側(cè)的拋物線上是否存在點P,使得PCD為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,EF分別是AB、BC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班學(xué)生做用頻率估計概率的實驗時,給出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實驗可能是(  )

A.拋一枚硬幣,出現(xiàn)正面朝上

B.從標有12,34,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)

C.從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球

D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BCECD邊上一點,將BCE沿BE折疊,使得C落到矩形內(nèi)點F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高爾基說:書,是人類進步的階梯. ”閱讀可以豐富知識、拓展視野、充實生活等諸多益處. 為了解學(xué)生的課外閱讀情況,某校隨機抽查了部分學(xué)生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計圖,其中條形統(tǒng)計圖因為破損丟失了閱讀5冊書數(shù)的數(shù)據(jù).

1)條形圖中丟失的數(shù)據(jù)是 ,并寫出閱讀書冊數(shù)的眾數(shù)是 、中位數(shù)是 ;

2)根據(jù)隨機抽查的這個結(jié)果,估計該校1200名學(xué)生中課外閱讀5冊書的學(xué)生人數(shù)是 ;

3)若學(xué)校又補查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊,將補查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補查了多少人?

查看答案和解析>>

同步練習(xí)冊答案