【題目】問題解決:如圖1,在平面直角坐標系xOy中,一次函數(shù)x軸交于點A,與y軸交于點B,以AB為腰在第二象限作等腰直角,點A、B的坐標分別為A______、B______

中點C的坐標.小明同學為了解決這個問題,提出了以下想法:過點Cx軸作垂線交x軸于點請你借助小明的思路,求出點C的坐標;

類比探究:數(shù)學老師表揚了小明同學的方法,然后提出了一個新的問題,如圖2,在平面直角坐標系xOy中,點A坐標,點B坐標,過點Bx軸垂線l,點Pl上一動點,點D是在一次函數(shù)圖象上一動點,若是以點D為直角頂點的等腰直角三角形,請直接寫出點D與點P的坐標.

【答案】1)① ,②;(2,,.

【解析】

1)利用坐標軸上點的特點建立方程求解,即可得出結論;

2)先構造出△AEC≌△BOA,求出AE,CE,即可得出結論;

3)同(2)的方法構造出△AFD≌△DGPAAS),分兩種情況,建立方程求解即可得出結論.

解:針對于一次函數(shù)

,

,

,

,

故答案為,

如圖1

知,,

,

過點C軸于E,

,

,

是等腰直角三角形,

,

中,,

,

,,

,

如圖2,過點D軸于F,延長FDBPG,

,

D在直線上,

設點,

,

軸,,

,

的方法得,,

,,

如圖2,

,

,

,

時,,,

,

時,,

,

即:,

利用坐標軸上點的特點建立方程求解,即可得出結論;

先構造出,求出AE,CE,即可得出結論;

的方法構造出,分兩種情況,建立方程求解即可得出結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點 A 、B分別在反比例函數(shù) 的圖象上,且OA ⊥OB ,則 的值為( )

A.
B.2
C.
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)用4個全等的直角三角形拼成如圖所示弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請你利用這個圖形解決下列問題:

(1)試說明a2+b2=c2;

(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,矩形 ABCO,B點坐標為(4,3),拋物線y=
經(jīng)過矩形ABCO的頂點 B 、C ,D為BC的中點,直線 AD y軸交 E點,與拋物線 交于第四象限的 F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖2,動點P從點C出發(fā),沿線段 CB以每秒1個單位長度的速度向終點B運動;同時,動點M從 A出發(fā),沿線 AE以每秒 個單位長度的速度向終點E運動.過點P作PH ⊥OA,垂足為H ,連接 MP ,MH .設點 P 的運動時間 t秒.
①問EP+ PH+ HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC的三個頂點坐標為A(-2.3)、B(-6,0)、C(-1,0)

(1) ABC繞坐標原點O旋轉(zhuǎn)180°,畫出圖形,并寫出點A的對應點A′ 的坐標________;

(2)ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,

直接寫出點A的對應點A″的坐標___________

(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空

如圖:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求證:CEDF.請完成下面的解題過程.

解:∵BD平分∠ABCCE平分∠ACB 已知

∴∠DBC_____,∠ECB_____ 角平分線的定義)

又∵∠ABC=∠ACB (已知)

∴∠_____=∠_____

又∵∠_____=∠_____ (已知)

∴∠F=∠_____

CEDF_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰長為5,一邊上的高為3,則底邊長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,BD是斜邊上高動點P從點A出發(fā)沿AB邊由A向終點B的速度勻速移動,動點Q從點B出發(fā)沿射線BC的速度勻速移動,點P、Q同時出發(fā),當點P停止運動,點Q也隨之停止連接AQ,交射線BD于點設點P運動時間為t秒.

在運動過程中,的面積始終是的面積的2倍,為什么?

當點Q在線段BC上運動時,t為何值時,相等.

查看答案和解析>>

同步練習冊答案