【題目】模型建立:

(1)如圖1,等腰直角三角形ABC中,∠ACB=90°CB=CA,直線ED經(jīng)過點(diǎn)C,過AADEDD,過BBEEDE

求證:△BEC≌△CDA

模型應(yīng)用:

(2)已知直線l1y=x+4y軸交與A點(diǎn),將直線l1繞著A點(diǎn)順時針旋轉(zhuǎn)45°l2,如圖2,求l2的函數(shù)解析式.

(3)如圖3,矩形ABCO,O為坐標(biāo)原點(diǎn),B的坐標(biāo)為(8,6),AC分別在坐標(biāo)軸上,P是線段BC上動點(diǎn),設(shè)PC=m,已知點(diǎn)D在第一象限,且是直線y=2x-6上的一點(diǎn),若△APD是不以A為直角頂點(diǎn)的等腰Rt△,請直接寫出點(diǎn)D的坐標(biāo).

【答案】(1)證明見解析;(2)y=x+4(3)(4,2),(,)(,)

【解析】

1)先根據(jù)ABC為等腰直角三角形得出CB=CA,再由AAS定理可知ACD≌△CBE;

2)過點(diǎn)BBCAB于點(diǎn)B,交l2于點(diǎn)C,過CCDx軸于D,根據(jù)∠BAC=45°可知ABC為等腰Rt,由(1)可知CBD≌△BAO,由全等三角形的性質(zhì)得出C點(diǎn)坐標(biāo),利用待定系數(shù)法求出直線l2的函數(shù)解析式即可;

3)當(dāng)點(diǎn)D為直角頂點(diǎn),分點(diǎn)D在矩形AOCB的內(nèi)部與外部兩種情況;點(diǎn)P為直角頂點(diǎn),顯然此時點(diǎn)D位于矩形AOCB的外部,由此可得出結(jié)論.

(1)∵△ABC為等腰直角三角形,

CB=CA,

又∵ADCDBEEC,

∴∠D=E=90°,∠ACD+BCE=180°-90°=90°,

又∵∠EBC+BCE=90°,

∴∠ACD=EBC,

ACDCBE中,

,

∴△ACD≌△EBC(AAS);

(2)過點(diǎn)BBCAB于點(diǎn)B,交l2于點(diǎn)C,過CCDx軸于D

如圖1,

∵∠BAC=45°,

∴△ABC為等腰Rt,

(1)可知:CBD≌△BAO,

BD=AOCD=OB,

∵直線l1y=x+4,

A(04),B(-30),

BD=AO=4CD=OB=3

OD=4+3=7,

C(-7,3),

設(shè)l2的解析式為y=kx+b(k≠0),

,

,

l2的解析式:y=x+4;

(3)當(dāng)點(diǎn)D位于直線y=2x-6上時,分兩種情況:

①點(diǎn)D為直角頂點(diǎn),分兩種情況:

當(dāng)點(diǎn)D在矩形AOCB的內(nèi)部時,過Dx軸的平行線EF,交直線OAE,交直線BCF,設(shè)D(x,2x-6);

OE=2x-6,AE=6-(2x-6)=12-2xDF=EF-DE=8-x;

ADE≌△DPF,得DF=AE,即:

12-2x=8-x,x=4

D(4,2);

當(dāng)點(diǎn)D在矩形AOCB的外部時,設(shè)D(x2x-6);

OE=2x-6AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x

1可知:ADE≌△DPF,

AE=DF,即:2x-12=8-x,x=

D(,);

②點(diǎn)P為直角頂點(diǎn),顯然此時點(diǎn)D位于矩形AOCB的外部;

設(shè)點(diǎn)D(x,2x-6),則CF=2x-6,BF=2x-6-6=2x-12;

(1)可得,APB≌△PDF,

AB=PF=8PB=DF=x-8;

BF=PF-PB=8-(x-8)=16-x;

聯(lián)立兩個表示BF的式子可得:

2x-12=16-x,即x=;

D(,)

綜合上面六種情況可得:存在符合條件的等腰直角三角形;

D點(diǎn)的坐標(biāo)為:(42),(,),()

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次課外實(shí)踐活動中,同學(xué)們要測量某公園人工湖兩側(cè)A,B兩個涼亭之間的距離.現(xiàn)測得AC=50m,BC=100m,∠CAB=120°,請計(jì)算A,B兩個涼亭之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將三角板ABC與三角板ADE擺放在一起;如圖2,固定三角板ABC,將三角板ADE繞點(diǎn)A按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角CAE=αα180°).當(dāng)ADE的一邊與ABC的某一邊平行(不共線)時,寫出旋轉(zhuǎn)角α的所有可能的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個三位正整數(shù)t,將各數(shù)位上的數(shù)字重新排序后(包括本身),得到一個新的三位數(shù) ac),在所有重新排列的三位數(shù)中,當(dāng)|a+c2b|最小時,稱此時的 t最優(yōu)組合,并規(guī)定Ft=|ab||bc|,例如124重新排序后為142、214、因?yàn)?/span>|1+44|=1|1+28|=5,|2+42|=4所以124124最優(yōu)組合,此時F124=1

1)三位正整數(shù)t,有一個數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),求證Ft=0;

2)一個正整數(shù)N個數(shù)字組成,若從左向右它的第一位數(shù)能被1整除,它的前兩位數(shù)能被2整除前三位數(shù)能被3整除,,一直到前N位數(shù)能被N整除,我們稱這樣的數(shù)為善雅數(shù).例如123的第一位數(shù)1能披1整除,它的前兩位數(shù)12能被2整除前三位數(shù)123能被3整除,123是一個善雅數(shù).若三位善雅數(shù)m=200+10x+y0≤x≤9,0≤y≤9,x、y為整數(shù))m的各位數(shù)字之和為一個完全平方數(shù),求出所有符合條件的善雅數(shù)Fm)的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批LED燈泡與普通白熾燈炮,其進(jìn)價與標(biāo)價如下表,該商場購進(jìn)LED燈泡與普通白熾燈炮共300個,LED燈泡按標(biāo)價進(jìn)行銷售,而普通白熾燈炮按標(biāo)價打九折銷售,銷售完這批燈泡后可以獲利3200元。

1)求該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?

2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計(jì)劃再次購進(jìn)兩種燈泡120個,并在不打折的情況下銷售完,若銷售完這批燈泡的獲利不超過總進(jìn)貨價的28%,則最多購進(jìn)LED燈泡多少個?

LED燈泡

普通白熾燈泡

進(jìn)價(元)

45

25

標(biāo)價(元)

60

30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)A(-3,0),點(diǎn)B(3,0),點(diǎn)Dy軸上的一個動點(diǎn),連接BD,將線段BD繞點(diǎn)B逆時針旋轉(zhuǎn)60°,得到線段BE,連接DE,得到△BDE,則OE的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A、B分別在x軸和y軸上,OAOB,點(diǎn)CAB的中點(diǎn),AB

(1) 如圖1,求的面積.

(2) 如圖2,E、F分別為上的動點(diǎn),且∠ECF45°,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司組織員工出去旅游,公司聯(lián)系旅游公司提供車輛,該公司現(xiàn)有50座與35座兩種車輛,如果用35座的車,會有5人沒座;如果全部換乘50座的車,則可少用2輛車,而且多出15個座位.

若該公司只能單獨(dú)租其中一種車,則分別需要多少輛?

35座車的日租金為250輛,50座的日租金為320輛,有哪種方案能使座位剛好且費(fèi)用最少?用這種方案公司要出多少資金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,王亮同學(xué)從家里跑步到體育館,在那里鍛煉了一陣后又走到某書店去買書, 然后散步走回家如圖反映的是在這一過程中,王亮同學(xué)離家的距離 s(千米)與離家的時間 t(分鐘)之間的關(guān)系,請根據(jù)圖象解答下列問題:

1)體育館離家的距離為 千米,書店離家的距離為_____千米;王亮同學(xué)在書店待了______分鐘.

2)分別求王亮同學(xué)從體育館走到書店的平均速度和從書店出來散步回家的平均速度.

查看答案和解析>>

同步練習(xí)冊答案