【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點,D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若平面BCC1B1與平面BED1所成的銳二面角的大小為 ,求線段D1E的長度.

【答案】
(1)解:證明:∵底面ABCD和側(cè)面BCC1B1是矩形,∴BC⊥CD,BC⊥CC1

又∵CD∩CC1=C,∴BC⊥平面DCC1D1

∵D1E平面DCC1D1,∴BC⊥D1E;


(2)解:由(1)可知BC⊥D1E,

又∵D1E⊥CD,且BC∩CD=C,

∴D1E⊥平面ABCD.

設G為AB的中點,以E為原點,EG,EC,ED1所在直線分別為x軸,y軸,z軸建立空間直角坐標系,如圖.

則E(0,0,0),B(1,1,0),C(0,1,0),G(1,0,0).

設D1E=a,則D1(0,0,a),B1(1,2,a).

設平面BED1的一個法向量為 =(x,y,z),

=(1,1,0), =(0,0,a),

,令x=1,得 =(1,﹣1,0);

設平面BCC1B1的一個法向量為 =(x1,y1,z1),

=(1,0,0), =(﹣1,1,a),

,令z1=1,得 =(0,﹣a,1).

由平面BCC1B1與平面BED1所成的銳二面角的大小為 ,

得|cos< >|=| =|cos = ,解得a=1.

∴D1E=1.


【解析】(1)由已知底面ABCD和側(cè)面BCC1B1是矩形,可得BC⊥CD,BC⊥CC1 , 由線面垂直的判定可得BC⊥平面DCC1D1 , 進一步得到BC⊥D1E;(2)由(1)可知BC⊥D1E,結(jié)合D1E⊥CD,可得D1E⊥平面ABCD.設G為AB的中點,以E為原點,EG,EC,ED1所在直線分別為x軸,y軸,z軸建立空間直角坐標系,求出平面BED1的一個法向量與平面BCC1B1的一個法向量,由平面BCC1B1與平面BED1所成的銳二面角的大小為 列式求得a值,則線段D1E的長度可求.
【考點精析】通過靈活運用空間中直線與直線之間的位置關(guān)系,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (k>0)的圖象與BC邊交于點E.

(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校準備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學生按學生票價購買).

運行區(qū)間

成人票價(元/張)

學生票價(元/張)

出發(fā)站

終點站

一等座

二等座

二等座

南靖

廈門

26

22

16

若師生均購買二等座票,則共需1020元.
(1)參加活動的教師有人,學生有人;
(2)由于部分教師需提早前往做準備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學生均購買二等座票.設提早前往的教師有x人,購買一、二等座票全部費用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購買一、二等座票全部費用不多于1032元,則提早前往的教師最多只能多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)的橢圓C: + =1(a>b>0)的左右焦點分別為F1、F2 , B為橢圓上的任意一點,且 |BF1|,|F1F2|, |BF2|成等差數(shù)列.
(1)求橢圓C的標準方程;
(2)直線l:y=k(x+2)交橢圓于P,Q兩點,若點A始終在以PQ為直徑的圓外,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知F1、F2分別為雙曲線C: =1的左、右焦點,P為雙曲線C右支上一點,且|PF1|=2|PF2|,則△PF1F2外接圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)若不等式f(x)≤6的解集為{x|﹣2≤x≤3},求實數(shù)a的值;
(2)在(1)的條件下,若存在實數(shù)n使f(n)≤m﹣f(﹣n)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 =0. (Ⅰ)求角B的大;
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點E在AD上,且AE=2ED.
(Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當二面角A﹣PB﹣E的余弦值為多少時,直線PC與平面PAB所成的角為45°?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,設橢圓C1 + =1(a>b>0),長軸的右端點與拋物線C2:y2=8x的焦點F重合,且橢圓C1的離心率是
(1)求橢圓C1的標準方程;
(2)過F作直線l交拋物線C2于A,B兩點,過F且與直線l垂直的直線交橢圓C1于另一點C,求△ABC面積的最小值,以及取到最小值時直線l的方程.

查看答案和解析>>

同步練習冊答案