【題目】如圖,在直角坐標(biāo)系中,RtABC的直角邊AC在x軸上,ACB=90°,AC=1,反比例函數(shù)(k0)的圖象經(jīng)過BC邊的中點D(3,1)

(1)求這個反比例函數(shù)的表達(dá)式;

(2)若ABC與EFG成中心對稱,且EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.

求OF的長;

連接AF,BE,證明四邊形ABEF是正方形.

【答案】(1);(2)1;證明見解析

【解析】

試題分析:(1)由D點坐標(biāo)可求得k的值,可求得反比例函數(shù)的表達(dá)式;

(2)由中心對稱的性質(zhì)可知ABC≌△EFG,由D點坐標(biāo)可求得B點坐標(biāo),從而可求得BC和AC的長,由全等三角形的性質(zhì)可求得GE和GF,則可求得E點坐標(biāo),從而可求得OF的長;由條件可證得AOF≌△FGE,則可證得AF=EF=AB,且EFA=FAB=90°,則可證得四邊形ABEF為正方形.

試題解析:

(1)反比例函數(shù)(k0)的圖象經(jīng)過點D(3,1),k=3×1=3,反比例函數(shù)表達(dá)式為;

(2)①∵D為BC的中點,BC=2,∵△ABC與EFG成中心對稱,∴△ABC≌△EFG,GF=BC=2,GE=AC=1,點E在反比例函數(shù)的圖象上,E(1,3),即OG=3,OF=OG﹣GF=1;

如圖,連接AF、BE,AC=1,OC=3,OA=GF=2,在AOF和FGE中,AO=FG,AOF=FGE,OF=GE,∴△AOF≌△FGE(SAS),∴∠GFE=FAO=ABC,∴∠GFE+AFO=FAO+BAC=90°,EFAB,且EF=AB,四邊形ABEF為平行四邊形,AF=EF,四邊形ABEF為菱形,AFEF,四邊形ABEF為正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用平方根去根號可以構(gòu)造一個整系數(shù)方程.例如:x= +1時,移項得x﹣1= ,兩邊平方得(x﹣1)2=( 2 , 所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述構(gòu)造方法,當(dāng)x= 時,可以構(gòu)造出一個整系數(shù)方程是(
A.4x2+4x+5=0
B.4x2+4x﹣5=0
C.x2+x+1=0
D.x2+x﹣1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B均在邊長為1的正方形網(wǎng)格格點上.

(1)求線段AB所在直線的函數(shù)解析式,并寫出當(dāng)0≤y≤2時,自變量x的取值范圍;
(2)將線段AB繞點B逆時針旋轉(zhuǎn)90°,得到線段BC,請在答題卡指定位置畫出線段BC.若直線BC的函數(shù)解析式為y=kx+b,則y隨x的增大而(填“增大”或“減小”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P(1,5)在函數(shù)x>0)的圖象上,過點P分別作x軸、y軸的垂線,垂足為點A,B;Qmn為圖象上另一動點,過點Q分別作x軸、y軸的垂線,垂足為點C、D.隨著m的增大,四邊形OCQD四邊形OAPB不重疊部分的面積

A. 先增大后減小 B. 先減小后增大

C. 先減小后增大再減小 D. 先增大后減小再增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用火柴棒按以下方式搭小魚,是課本上多次出現(xiàn)的數(shù)學(xué)活動.

(1)搭4條小魚需要火柴棒_________根;

(2)搭n條小魚需要火柴棒_____________根;

(3)若搭n朵某種小花需要火柴棒(3n+44)根,現(xiàn)有一堆火柴棒,可以全部用上搭出m條小魚,也可以全部用上搭出m朵小花,求m的值及這堆火柴棒的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃在“十周年”慶典當(dāng)天開展購物抽獎活動,凡當(dāng)天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個扇形,分別標(biāo)上1,2,3,4四個數(shù)字,抽獎?wù)哌B續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖像和一次函數(shù)y2=ax+b的圖像交于A(3,4)、B(—6,n)。

(1)求兩個函數(shù)的解析式

(2)觀察圖像,寫出當(dāng)x為何值時y1>y2?

(3)C、D分別是反比例函數(shù)第一、三象限的兩個分支上的點,且以A、B、C、D為頂點的四邊形是平行四邊形請直接寫出C、D兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰三角形ABO的底邊OA在x軸上,頂點B在反比例函數(shù)y= (x>0)的圖象上,當(dāng)?shù)走匫A上的點A在x軸的正半軸上自左向右移動時,頂點B也隨之在反比例函數(shù)y= (x>0)的圖象上滑動,但點O始終位于原點.

(1)如圖①,若點A的坐標(biāo)為(6,0),求點B的坐標(biāo);
(2)當(dāng)點A移動到什么位置時,三角形ABO變成等腰直角三角形,請說明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點P在反比例函數(shù)y= (x>0)的圖象上,斜邊A1A在x軸上,求點A1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案