下列計(jì)算正確的是( 。
A. x3+x=x4 B. x2•x3=x5 C. (x2)3=x5 D. x9÷x3=x3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線y2=(x>0)交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:
①S△ADB=S△ADC;
②當(dāng)0<x<3時(shí),y1<y2;
③如圖,當(dāng)x=3時(shí),EF=;
④當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減。
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣6,0),B點(diǎn)坐標(biāo)為(4,0),點(diǎn)D為BC的中點(diǎn),點(diǎn)E為線段AB上一動(dòng)點(diǎn),連接DE經(jīng)過點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為y=ax2+bx+8.
(1)求拋物線的解析式;
(2)如圖①,將△BDE以DE為軸翻折,點(diǎn)B的對稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動(dòng)時(shí),拋物線y=ax2+bx+8的對稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將圖1的正方形作如下操作:第1次分別連接對邊中點(diǎn)如圖2,得到5個(gè)正方形;第2次將圖2左上角正方形按上述方法再分割如圖3,得到9個(gè)正方形…,以此類推,第n次操作后,得到正方形的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知直線l與⊙O相離.OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長線交直線l于點(diǎn)C.
(1)求證:AB=AC;
(2)若PC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=3,將△ABD沿對角線BD對折,得到△EBD,DE與BC交于點(diǎn)F,∠ADB=30°,則EF=( 。
A. B. 2 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖2,在△ABC中,∠C=90°,點(diǎn)D,E分別在邊AC,AB上,
若∠B=∠ADE,則下列結(jié)論正確的是
A.∠A和∠B互為補(bǔ)角 B. ∠B和∠ADE互為補(bǔ)角
C.∠A和∠ADE互為余角 D.∠AED和∠DEB互為余角
圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一數(shù)學(xué)興趣小組為了測量河對岸樹AB的高,在河岸邊選擇一點(diǎn)C,從C處測得樹梢A的仰角為45°,沿BC方向后退10米到點(diǎn)D,再次測得A的仰角為30°,求樹高.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com