如圖,正方形ABCD的邊長為2,AE=EB,MN=1,線段MN的兩端在CB,CD上滑動,當(dāng)CM=    時(shí),△AED與以M,N,C為頂點(diǎn)的三角形相似.
【答案】分析:根據(jù)題意不難確定Rt△AED的兩直角邊AD=2AE.再根據(jù)相似的性質(zhì)及變化,可考慮Rt△MCN的兩直角邊MC、NC間的關(guān)系滿足是或2倍.求得CM的長.
解答:解:設(shè)CM的長為x.
在Rt△MNC中
∵M(jìn)N=1,
∴NC=,
①當(dāng)Rt△AED∽Rt△CMN時(shí),
,
,
解得x=或x=(不合題意,舍去),
②當(dāng)Rt△AED∽Rt△CNM時(shí),

,
解得x=(不合題意,舍去),
綜上所述,CM=時(shí),△AED與以M,N,C為頂點(diǎn)的三角形相似.
故答案為:
點(diǎn)評:本題考查相似三角形的判定與性質(zhì)、正方形的性質(zhì).解決本題特別要考慮到①當(dāng)Rt△AED∽Rt△CMN時(shí)②當(dāng)Rt△AED∽Rt△CNM時(shí)這兩種情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案