【題目】如果,矩形ABCD中,點E在AB上,點F在CD上,點G,H在對角線AC上,且CH=AG,CF=AE.
(1)求證:△AGE≌△CHF;
(2)若AB=8,AD=4,且GH恰好平分∠FGE,求CF的長.
【答案】
(1)證明:∵ABCD是矩形,
∴AB∥CD,
∴∠FCH=∠EAG,
在△AGE和△CHF中
∴△AGE≌△CHF(SAS);
(2)解:連接AF,
∵GH平分∠FGE,
∴∠FGH=∠EGH,
∵FH∥GE,
∴∠EGH=∠FHG,
∴∠FGH=∠FHG,
∴FG=FH,∠FGA=∠FHC,
在△FGA和△FHC中
∴△FGA≌△FHC(SAS),
∴FC=FA,
設FC=x,則FA=x,F(xiàn)D=8﹣x,
在Rt△ADF中,x2=(8﹣x)2+42,
解得:x=5,
即CF的長為5.
【解析】(1)根據矩形的性質得出AB∥CD,求出∠FCH=∠EAG,根據SAS推出全等即可;(2)連接AF,求出△FGA≌△FHC,根據全等三角形的性質得出FC=FA,設FC=x,則FA=x,F(xiàn)D=8﹣x,根據勾股定理得出方程,求出方程的解即可.
【考點精析】認真審題,首先需要了解矩形的性質(矩形的四個角都是直角,矩形的對角線相等).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為半圓內一點,O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF. 求證:四邊形BCFE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)解方程:x2=2x.
(2)如圖,Rt△ABC中,∠BAC=90°,AB=5,AC=12,將△ABC向右平移至△A′B′C′的位置,使得四邊形ABB′A′為菱形,求B′C的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,點P是BC的中點,僅用無刻度的直尺按要求畫圖:
(1)在圖①中畫出AD的中點M;
(2)在圖②中畫出對角線AC的三等分點E,點F.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖 1,AB∥CD,直線 EF 交 AB 于點 E,交 CD 于點 F,點 G 在 CD 上,點 P在直線 EF 左側,且在直線 AB 和 CD 之間,連接 PE,PG.
(1) 求證: ∠EPG=∠AEP+∠PGC;
(2) 連接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度數(shù).
(3) 如圖 2,若 EF 平分∠PEB,∠PGC 的平分線所在的直線與 EF 相交于點 H,則∠EPG 與∠EHG之間的數(shù)量關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是根據某市2010年至2014年工業(yè)生產總值繪制的折線統(tǒng)計圖,觀察統(tǒng)計圖獲得以下信息,其中信息判斷錯誤的是( )
A.2010年至2014年間工業(yè)生產總值逐年增加
B.2014年的工業(yè)生產總值比前一年增加了40億元
C.2012年與2013年每一年與前一年比,其增長額相同
D.從2011年至2014年,每一年與前一年比,2014年的增長率最大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(方案設計題)如圖是人民公園中的荷花池,現(xiàn)要測量荷花池岸邊樹A與樹B間的距離.如果直接測量比較困難,請你根據所學知識,以卷尺和測角儀為測量工具,設計兩種不同的測量方案并畫出圖形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com