【題目】如圖,在平面直角坐標(biāo)系中,正六邊形的對稱中心在反比例函數(shù)的圖象上,邊軸上,點軸上,已知.若該反比例函數(shù)圖象與交于點,則點的橫坐標(biāo)是_________

【答案】

【解析】

過點Px軸垂線PG,連接BP,可得BP2,GCD的中點,所以P2),從而求出反比例函數(shù)的解析式,易求D3,0),,待定系數(shù)法求出DE的解析式為,聯(lián)立反比例函數(shù)與一次函數(shù)即可求點Q的坐標(biāo).

過點Px軸垂線PG,連接BP

P是正六邊形ABCDEF的對稱中心,CD2,

BP2,GCD的中點,

CG=1,CP=2,

PG=

P2,),

P在反比例函數(shù)上,

k2,

,

OD=OC+CD=3,BE=2BP=4,

D3,0),E4,),

設(shè)DE的解析式為ymxb

,

,

聯(lián)立方程解得

Q點在第一象限,

點橫坐標(biāo)為,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數(shù)關(guān)系式為h=20t(t≥0) 回答問題:

(1)小球的飛行高度能否達(dá)到19.5m;

(2) 小球從最高點到落地需要多少時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰ABCADE中,AB=AC,AD=AE,且∠BAC=DAE=120°.

(1)求證:ABD≌△ACE;

(2)把ADE繞點A逆時針方向旋轉(zhuǎn)到圖②的位置,連接CD,點M、P、N分別為DE、DC、BC的中點,連接MN、PN、PM,判斷PMN的形狀,并說明理由;

(3)在(2)中,把ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=6,請分別求出PMN周長的最小值與最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段的直徑,點上一點,于點,交于點交于點,點的延長線上一點,且

1)求證:的切線;

2)求證:;

3)若的半徑為5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191217日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.在民族復(fù)興的路上我們偉大的祖國又前進(jìn)了一大步!如圖,“山東艦”在一次試水測試中,由東向西航行到達(dá)處時,測得小島位于距離航母30海里的北偏東37°方向.“山東艦”再向西勻速航行1.5小時后到達(dá)處,此時測得小島位于航母的北偏東70°方向.

1_______°;

2)求航母的速度.(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會利用一些變形技巧來簡化式子,解答問題.

材料一:在解決某些分式問題時,倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡,以達(dá)到計算目的.

例:已知:,求代數(shù)式的值.

解:∵,∴

材料二:在解決某些連等式問題時,通常可以引入?yún)?shù)“”,將連等式變成幾個值為的等式,這樣就可以通過適當(dāng)變形解決問題.

例:若,且,求的值.

解:令,,∴

根據(jù)材料回答問題:

1)已知,求的值.

2)已知,求的值.

3)若,,,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20179月,我國中小學(xué)生迎來了新版教育部統(tǒng)編義務(wù)教育語文教科書,本次統(tǒng)編本教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

(1)本次一共調(diào)查了   名學(xué)生;

(2)請將條形統(tǒng)計圖補(bǔ)充完整;

(3)某班語文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人分別從各自家出發(fā)乘坐出租車前往智博會,由于堵車,兩人同時選擇就近下車,已知甲車在乙車前面200米的A地下車,然后分別以各自的速度勻速走向會場,3分鐘后,乙發(fā)現(xiàn)有物品遺落在出租車上,于是立即以不變的速度返回尋找,找到出租車時,出租車恰好向會場方向行駛了100米,乙拿到物品后立即以原速返回繼續(xù)走向會場,同時甲以先前速度的一半走向會場,又經(jīng)過10分鐘,乙在B地追上甲,兩人隨后一起以甲放慢后的速度行走1分鐘到達(dá)會場,甲、乙兩人相距的路程y(m)與甲行走的時間x(min)之間的關(guān)系如圖所示,(乙拿物品的時間忽略不計),則A地距離智博會會場的距離為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的三個頂點A,B,D在坐標(biāo)軸上,且已知點A,),點B,),現(xiàn)有拋物線m經(jīng)過點B,COD的中點.

1)求拋物線m的解析式;

2)在拋物線上是否存在點P,使得?若存在,求出點P的坐標(biāo),若不存在,請說明理由;

3)拋物線mx軸的另一交點為F,M是線段AC上一動點,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案