【題目】在△ABC,C=2A=6B,則∠A=_____度。

【答案】54.

【解析】

設(shè)∠B=α,則∠A=3α,∠C=6α,依據(jù)∠A+B+C=180°,可得出α,由此可得∠A的度數(shù).

解:設(shè)∠B=α,則∠A=3α,∠C=6α,
∵∠A+B+C=180°,
3α+α+6α=180°
α=18°,
∴∠A=3×18°=54°
故答案為:54

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線圖象經(jīng)過A(﹣1,0),B(4,0)兩點.

1)求拋物線的解析式;

2)若Cmm﹣1)是拋物線上位于第一象限內(nèi)的點,D是線段AB上的一個動點(不與端點A、B重合),過點D分別作DEBCACEDFACBCF

①求證:四邊形DECF是矩形;

②試探究:在點D運動過程中,DE、DF、CF的長度之和是否發(fā)生變化?若不變,求出它的值;若變化,試說明變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O為直線AB上一點,在直線AB上側(cè)任作一個∠COD,使得∠COD=90°

1)如圖1,過點O作射線OE,當OE恰好為∠AOD的角平分線時,請直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ COE(填一個數(shù)字);

2)如圖2,過點O作射線OE,當OC恰好為∠AOE的角平分線時,另作射線OF,使得OF平分∠COD,求∠FOB+EOC的度數(shù);

3)在(2)的條件下,若∠EOC=3EOF,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在平面直角坐標系中,直線l與y軸相交于點A(0,m)其中m<0,與x軸相交于點B(4,0).拋物線y=ax2+bx(a>0)的頂點為F,它與直線l相交于點C,其對稱軸分別與直線l和x軸相交于點D和點E.

(1)設(shè)a=,m=﹣2時,

①求出點C、點D的坐標;

②拋物線y=ax2+bx上是否存在點G,使得以G、C、D、F四點為頂點的四邊形為平行四邊形?如果存在,求出點G的坐標;如果不存在,請說明理由.

(2)當以F、C、D為頂點的三角形與△BED相似且滿足三角形FAC的面積與三角形FBC面積之比為1:3時,求拋物線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個角的余角比它本身小,這個角是( )
A.大于45°
B.小于45°
C.大于0°小于45°
D.大于45°小于90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育康老師對全班45名學(xué)生進行了一次體育模擬測試(得分均為整數(shù))成績滿分為10分,成績達到9分以上(包含9分)為優(yōu)秀,成績達到6分以上(包含6分)為合格,1班的體育委員根據(jù)這次測試成績,制作了統(tǒng)計圖和分析表如下:

初二1班體育模擬測試成績分析表

平均分

方差

中位數(shù)

眾數(shù)

合格率

優(yōu)秀率

男生

2

8

7

95%

40%

女生

7.92

1.99

8

96%

36%

根據(jù)以上信息,解答下列問題:
(1)在這次測試中,該班女生得10分的人數(shù)為4人,則這個班共有女生人;
(2)補全初二1班男生體育模擬測試成績統(tǒng)計圖,并把相應(yīng)的數(shù)據(jù)標注在統(tǒng)計圖上;
(3)補全初二1班體育模擬測試成績分析表;
(4)你認為在這次體育測試中,1班的男生隊、女生隊哪個表現(xiàn)更突出一些?并寫出一條支持你的看法的理由;
(5)體育康老師說,從整體看,1班的體育成績在合格率方面基本達標,但在優(yōu)秀率方面還不夠理想,因此他希望全班同學(xué)繼續(xù)加強體育鍛煉,爭取在期末考試中,全班的優(yōu)秀率達到60%,若男生優(yōu)秀人數(shù)再增加6人,則女生優(yōu)秀人數(shù)再增加多少人才能完成康老師提出的目標?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=7,點E是AD上一個動點,把BAE沿BE向矩形內(nèi)部折疊,當點A的對應(yīng)點A1恰好落在BCD 的平分線上時,CA1的長為( )

A、3或4 B、4或3 C、3或4 D、3或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形具有而矩形不一定具有的性質(zhì)是 ( )

A. 對角線互相垂直 B. 對角線互相平分

C. 對角線相等 D. 四個角都是直角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師布置10道選擇題作業(yè),批閱后得到如下統(tǒng)計表.根據(jù)表中數(shù)據(jù)可知,這45名同學(xué)答對題數(shù)組成的樣本的中位數(shù)是題.

答對題數(shù)

7

8

9

10

人數(shù)

4

18

16

7

查看答案和解析>>

同步練習(xí)冊答案