【題目】問題情景:如圖1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度數(shù).
(1)麗麗同學(xué)看過圖形后立即口答出:∠APC=85°,請你補(bǔ)全她的推理依據(jù).
如圖2,過點(diǎn)P作PE∥AB,
∵AB∥CD,∴PE∥CD. ( )
∴∠A+∠APE=180°.
∠C+∠CPE=180°. ( )
∵∠PAB=140°,∠PCD=135°,
∴∠APE=40°,∠CPE=45°
∴∠APC=∠APE+∠CPE=85°.( )
問題遷移:
(2)如圖3,AD∥BC,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動時(shí),∠ADP=∠α,∠BCP=∠β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由.
(3)在(2)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.
【答案】(1)平行于同一條直線的兩條直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);等量代換;(2)∠CPD=∠α+∠β,理由見解析;(3)當(dāng)P在BA延長線時(shí),∠CPD=∠β﹣∠α;當(dāng)P在AB延長線時(shí),∠CPD=∠α﹣∠β.
【解析】(1) 過點(diǎn)P作PE∥AB,根據(jù)“兩直線平行,同旁內(nèi)角互補(bǔ)”可得∠A+∠APE=180°,∠C+∠CPE=180°;進(jìn)一步可求得結(jié)果.(2)過P作PE∥AD交CD于E,則AD∥PE∥BC,根據(jù)“兩直線平行,內(nèi)錯(cuò)角相等”可得∠α=∠DPE,∠β=∠CPE,因此,∠CPD=∠DPE+∠CPE=∠α+∠β;(3)類似(2)的方法,分兩種情況,即:P在BA延長線時(shí)或在AB延長線時(shí).可得出結(jié)論..
解:(1)過點(diǎn)P作PE∥AB,
如圖2所示:
∵AB∥CD,
∴PE∥CD.(平行于同一條直線的兩條直線平行)
∴∠A+∠APE=180°.
∠C+∠CPE=180°.(兩直線平行同旁內(nèi)角互補(bǔ))
∵∠PAB=140°,∠PCD=135°,
∴∠APE=40°,∠CPE=45°,
∴∠APC=∠APE+∠CPE=85°.(等量代換)
故答案為:平行于同一條直線的兩條直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);等量代換;
(2)∠CPD=∠α+∠β,理由如下:
如圖3所示,過P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(3)當(dāng)P在BA延長線時(shí),如圖4所示:
過P作PE∥AD交CD于E,
同(2)可知:∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠β﹣∠α;
當(dāng)P在AB延長線時(shí),如圖5所示:
同(2)可知:∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠α﹣∠β.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>=n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:
①<1.493>=1;
②<2x>=2<x>;
③若,則實(shí)數(shù)x的取值范圍是;
④當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;
⑤。
其中,正確的結(jié)論有 (填寫所有正確的序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】吸煙有害健康,為配合“戒煙”運(yùn)動,某校組織同學(xué)們在社區(qū)開展了“你支持哪種戒煙方式”的隨機(jī)問卷調(diào)查,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖:據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)同學(xué)們一共調(diào)查了多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若該社區(qū)有1萬人,請你估計(jì)大約有多少人支持“警示戒煙”這種方式?
(4)為了讓更多的市民增強(qiáng)“戒煙”意識,同學(xué)們在社區(qū)做了兩期“警示戒煙”的宣傳.若每期宣傳后,市民支持“警示戒煙”的平均增長率為20%,則兩期宣傳后支持“警示戒煙”的市民約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC與∠CBE的平分線相交于點(diǎn)P,BE=BC,PB與CE交于點(diǎn)H,PG∥AD交BC于F,交AB于G,下列結(jié)論:① GA=GP;② S△PAC∶S△PAB=AC∶AB;③ BP垂直平分CE;④ FP=FC,其中正確的判斷有( )
A. 只有①② B. 只有③④ C. 只有①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某品牌電風(fēng)扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號的電風(fēng)扇銷售量進(jìn)行統(tǒng)計(jì),繪制如下兩個(gè)統(tǒng)計(jì)圖(均不完整).請你結(jié)合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風(fēng)扇共多少臺?
(2)若該商場計(jì)劃訂購這三種型號的電風(fēng)扇共2000臺,根據(jù)5月份銷售量的情況,求該商場應(yīng)訂購丙種型號電風(fēng)扇多少臺比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點(diǎn)D作EF∥BC,分別交AB、AC于E、F兩點(diǎn),則圖中共有__________個(gè)等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長是__________;
(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為“若△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個(gè)等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長;
(3)已知:如圖3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點(diǎn)D作DE∥BC,分別交AB、AC于E、F兩點(diǎn),則EF與BE、CF之間又有何數(shù)量關(guān)系呢?直接寫出結(jié)論不證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點(diǎn),∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是反比例函數(shù)圖像上一點(diǎn),作軸于點(diǎn),且的面積為,點(diǎn)坐標(biāo)為.
()求和的值.
()若直線經(jīng)過點(diǎn),交另一支雙曲線于點(diǎn),求的面積.
()指出取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值,直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com